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Abstract 

Erroneous decisions by drivers to stop or go at the onset of yellow can lead to incidences 

of premature stopping or red light running, which in turn can cause severe rear end or right angle 

collisions. Because trucks or busses are relatively less maneuverable, have lower available 

acceleration and lower comfortable deceleration rates, and have a higher line of sight than do 

passenger vehicles, the risk of crashes is higher for trucks than other vehicles upon stop or go 

situations. Dilemma zone protection systems are used at high speed intersection s to enhance 

safety; however, such systems are generally designed around the dilemma zone boundaries of 

cars, and are static, lacking the intelligence to adapt to existing traffic, weather, or visibility 

conditions. The current research examined the effect of information systems such as advance 

warning flashers (AWFs) on the probability of conflict at onset yellow at high-speed 

intersections. A probit modeling technique was used to establish dilemma zone boundaries. 

Based on dilemma zone boundaries, probability of perceived conflict curves were computed and 

compared against actual conflicts that were observed at each of the studied intersections. This 

information was used to generate a better understanding of the risks associated with the use of 

AWFs. Results demonstrated that the provision of stop/go information that was consistent with 

the actual duration of yellow reduced the variability of driver decision making and reduced the 

dilemma hazard. When no information was provided to drivers, the critical time threshold for 

stopping was very close to the actual duration of yellow. These findings implied that drivers 

were inclined to stop when the time to stop bar was greater than the duration of yellow, and were 

inclined to go when the time to the stop bar was less than the duration of yellow. This concept 

was used to develop a prototype Yellow Onset Driver Assistance (YODA) system, consisting of 

a pole-mounted unit (StreetWave) and an in-vehicle unit (MobiWave). The in-vehicle unit was 



xi 

designed to request decision assistance from the pole-mounted unit as a truck approaches an 

intersection; based on the time to the stop bar and the duration of yellow, the YODA system 

advises drivers on whether or not it is safe to proceed through the intersection.  
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Chapter 1Introduction and Objectives 

According to the National Highway Traffic Safety Administration (NHTSA), the total 

cost of motor vehicle collisions in the United States in 2006 was estimated at $230.6 billion 

(National Highway Traffic Safety Administration 2007). The total cost of motor vehicle 

collisions in the State of Nebraska was projected at $2.3 billion in 2007 (State of Nebraska 

2007). Intersection or intersection-related crashes accounted for nearly 40.5% of all reported 

crashes in 2006 in the U.S (National Highway Traffic Safety Administration 2007).Every year, 

intersection and intersection-related crashes average approximately 8,500 fatal accidents, as 

shown in figure 1.1. In addition to the number of fatal crashes, approximately 900,000 injury 

crashes per year are intersection or intersection-related crashes.  

 

 
 

Figure 1.1 Intersection and intersection-related fatal accidents in the U.S. 
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The State of Nebraska is not void of this alarming overrepresentation of intersection and 

intersection-related crashes. Multi-vehicle accidents at intersections comprised 47.2% of all 

reported crashes in 2007 (State of Nebraska 2007). With the exception of 2001, the percentage of 

total crashes consisting of multi-vehicle collisions at intersections has remained constant in 

Nebraska for the past 10 years. 

Each day at a typical intersection, approximately 700-800 occurrences of main-street 

phase terminations transpire in which drivers approaching an intersection at high speeds have to 

decide whether to proceed or stop at the onset of yellow (Sharma 2008). An incorrect decision 

could lead to a right angle or rear-end crash; these crashes account for roughly 80% of 

intersections crashes in Nebraska (State of Nebraska 2008).The zone where the risk of making an 

erroneous decision is high is termed the “dilemma zone” (Parsonson 1978). 

The stop-or-go decision is even more difficult for heavy vehicles due to elevated 

constraints to their maneuverability. The NHTSA reports that a loaded tractor-trailer requires 20-

40% farther to stop than a passenger car (Insurance Institute for Highway Safety 2006). In 

addition to the increased stopping distance required, trucks are less maneuverable. The State of 

Nebraska reported that in 2007, heavy trucks accounted for 13% of overall crashes and 3.4% of 

fatal crashes (State of Nebraska 2008). Although the number of passenger cars involved in fatal 

crashes in the United States has decreased since 1994, the number of large trucks involved in 

fatal crashes has remained relatively constant, at 5,000 per year (FARS 2008). 

 Specialized traffic signal control systems, often called dilemma done protection systems, 

are deployed at high speed intersections. There are two basic algorithms used by dilemma zone 

protection systems: the green extension algorithm and the green termination algorithm. 



 

3 

Dilemma zone protection offered at high-speed intersections is based on the dilemma 

zone for passenger vehicles. Federal law requires a passenger car’s brakes to sustain a minimum 

deceleration rate of 21 ft/s
2
. A truck’s braking system is required to maintain a minimum 

deceleration rate of 14 ft/s.
2
 Therefore, at minimum deceleration rates, a truck requires 50% 

more stopping distance than a car (Federal Motor Carrier Safety Regulations 2005). Truck 

drivers may be more reluctant to stop at high-speed intersections because of the increased 

stopping distance or high deceleration rate required to stop. The extended amount of time 

required for trucks to achieve speed prior to stopping is another possible motivation for the 

reluctance to stop at such intersections. 

Review of the literature confirms the deficiency of signal control strategies based 

specifically on measuring truck dilemma zone boundaries. Zimmerman (2007) explored the 

addition of an extended truck dilemma zone. Through the use of real-time simulation, 

Zimmerman concluded that an additional 1.5 s of upstream time added to the passenger car 

dilemma zone (i.e., 2.5 s-5.5 s from the stop line) would reduce the number of trucks in the 

dilemma zone. The current research found that the dilemma zone boundary for heavy vehicles (3 

-8.2 s from the stop line) was almost twice the dilemma zone boundary of passenger vehicles 

(3.5-6 s from the stop line). 

Even for passenger vehicles, the underlying concept of dilemma zone boundaries has a 

serious limitation. Although dilemma zone boundaries are determined using a sound stochastic 

concept, the definition of dilemma zone boundaries is still deterministic; a driver in the area 

where the probability of stopping ranges from 10%-90% is considered to be unsafe, and anyone 

outside of this area is considered to be safe. This binary approach states that a person is either at-

risk or risk-free—no comments are made, however, about the level of risk at each location. 
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A new and improved surrogate measure dilemma zone hazard function was recently 

proposed by Sharma et al. (2007). This dilemma hazard function is a stochastic function 

estimating the probability of traffic conflict of varying severity levels at a specific spatial 

location.  

Correct guidance for decisions at the onset of yellow can reduce the variability in driver 

decision making and improve the safety of the intersection. Currently, Advance Warning 

Flashers (AWF) represent the only driver assistance system in place. These systems are placed at 

a fixed distance from the stop bar and activate prior to the onset of yellow. Any vehicle in 

advance of the flashers is advised to stop, while any vehicle past the flashers can proceed 

through the intersection. The drawbacks of these flashers are as follows: 

i) Advance flashers do not account for operational differences and dilemma zone 

differences occurring between different types of vehicles, providing, instead, the 

same information to both cars and trucks.  

ii) Vehicles traveling at different speeds incur different crash risks, but are provided        

with the same information. 

iii) The impact of weather and time of day is not accounted for by AWF. 

iv) AWF does not consider the impact of the presence of other vehicles.  

v) Personalized and dynamic information cannot be provided by AWF. 

Using existing AWF systems as a test bed, the current research consisted of an in-depth 

study of the role of information on driver stop-go decisions. Based on the insights gained, a 

smart and dynamic yellow onset decision assist system was developed. This system was able to 

cater to individual vehicle assistance needs.  
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The Yellow Onset Driver Assistance (YODA) system consisted of a pole-mounted unit 

(street wave) and an in-vehicle unit. The in-vehicle unit requests decision assistance from the 

pole-mounted unit as a truck approaches an intersection. Based on vehicles’ time to the stop bar 

and current speed, the pole-mounted unit responds to the in-vehicle unit with a recommended 

course of action. The system is a proof of concept for providing more personalized information 

to the drivers. 

The current report is structured as follows: chapter 2 contains a literature review of past 

research pertaining to the development and advancement of dilemma zone definitions and 

methods of mitigation. Past and current methods for modeling driver behavior at high-speed 

intersections at the onset of yellow are presented, and the current practices involved in assessing 

the safety of vehicles approaching an intersection are reviewed. The limitations of these practices 

are explained. 

Chapter 3 describes the six data collection sites that were utilized in the current research, 

five of which had AWF and one that did not have AWF. A combination of radar-based detectors 

and video was used to continuously track vehicles approaching high-speed signalized 

intersections. This chapter describes the different data collection setups and details the validation 

of each setup. In addition, the chapter discusses the steps taken to process the collected video. 

Chapter 4 describes the theory underlying driver behavior upon approaching a signalized 

intersection. The decision process of drivers at the onset of yellow was modeled using the probit 

modeling technique. The impact of the role of information on driver decision making was 

assessed. 

Chapter 5 details the development of the prototype YODA system. The utilized 

technology, codes, and testing of the prototype is described. 
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Chapter 6 summarizes study findings and proposes steps for future research. Overall, in 

regards to supplementing driver decision making at high speed intersection approaches, our 

findings prompt a new consideration for traffic engineers in terms of mitigating right-angle and 

rear-end crash risks  
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Chapter 2 Literature Review 

2.1 Introduction 

The following chapter contains a literature review on past research pertaining to the 

development and advancement of dilemma zone definitions and methods of risk mitigation. Past 

and current methods for modeling driver behavior at high-speed intersections at the onset of 

yellow are presented, as are current practices used in assessing the safety of vehicles approaching 

an intersection. 

2.2 Dilemma Zone Definitions 

There are two distinctive types of dilemma zones: Type I and Type II. Type I dilemma 

zones are caused by improper signal timing of the clearance intervals. Type II dilemma zones, 

referred to as “option,” or, “indecision” zones, are caused by variance in driver behavior. The 

following section will further describe the differences between the definitions of the two 

commonly proposed types of dilemma zones. 

2.2.1 Type I Dilemma Zone 

Gazis et.al. (1960) observed problems associated with drivers facing the yellow change 

interval; the authors defined the “amber light dilemma” as a situation in which a driver may be 

able to neither stop safely after the onset of yellow indication nor to clear an intersection before 

the signal turns red (Gazis et al. 1960). Figure 2.1 illustrates the concept of the Type I dilemma 

zone: 
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Figure 2.1 Illustration of Type I dilemma zone 

 

The two critical distances shown in figure 2.1 are the maximum yellow passing distance 

(XP) and the minimum safe stopping distance (XS). A vehicle downstream of XS will not be able 

to stop safely before the stop bar. Conversely, a vehicle upstream of XP cannot safely advance 

upon and clear the intersection during the yellow phase. As shown in figure 2.1, when XS > XP, a 

vehicle located within the region between XS and XP can neither safely stop nor safely cross the 

intersection during the yellow phase, creating a “dilemma.” Thus, the dilemma zone is the 

physical region between XS and XP when XS > XP. Equations 2.1 and 2.2 represent XS and XP. 
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XP = Maximum Yellow 
Passing Distance 
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Vehicles Cannot Stop XS = Minimum (Safe) Stopping Distance 
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  (2.1) 

   

                                                            
 

 
        

   (2.2)   

 

where,     

XS = minimum safe stopping distance (ft); 

XP = maximum yellow passing distance (ft); 

V0 = vehicle approach speed (ft/s); 

δ2 = driver’s stopping perception-reaction time (s); 

a2 = driver’s maximum comfortable deceleration rate (ft/s
2
); 

δ1 = perception-reaction time of driver crossing the intersection (s); 

a1 = driver’s maximum comfortable acceleration rate (ft/s
2
); 

τ = duration of yellow interval (s); 

W = sum of intersection width and vehicle length (ft). 

 

Equation 2.2 does not take into account an all-red clearance interval, which will be 

discussed later in this report. Therefore, with proper design of the yellow interval or a change in 

driver behavior, the Type I dilemma zone can be eliminated. In certain instances, drivers may 

eliminate the dilemma zone by accelerating to or above the speed limit. However, as Liu et al. 

(1996) mentioned, advising drivers to use the onset of yellow as an instruction to accelerate 

would be dangerous. Thus, assuming a crossing vehicle does not accelerate, the Type I dilemma 

zone may be eliminated by adjusting the yellow interval to set XS – XP to 0.  
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  (2.3) 

 

The yellow duration, τ, defined in the GHM model, has been divided into two intervals: 

the yellow permissive interval, y      
  

   
 , and the all-red clearance interval,    

   

  
 .  

Studies have shown a wide variability in driver behavior (Gazis et al. 1960; Olson and Rothery 

1962; May 1968; Williams 1977; Parsonson and Santiago 1980; Sivak et al. 1982; Wortman and 

Matthias 1983; Chang et al. 1985; Liu et al. 2007). Olson and Rothery (1962) discovered that 

some drivers used the yellow interval as a green extension. May (1968) found that in an effort to 

avoid the dilemma zone some drivers accelerated or decelerated heavily. Figure 2.2 and table 2.1 

illustrate the variability in perception reaction times and deceleration rates at the onset of yellow. 

The inability to consider variability in driver behavior variability in driver behavior is the main 

limitation of the GHM model. 
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Figure 2.2 Previously reported perception reaction times 

 

Table 2.1 Variability in previously reported deceleration rates 

Author Speeds studied/calculated Mean deceleration rate (ft/s
2
) 

Gazis et.al. (1960) 45mph 16 

Williams (1977) 10-25 mph 9.7 

Parsonson and Santiago (1980) - 10 

Wortman and Matthias (1983) 30-50mph 11.5 

Chang et.al (1985) >20mph 9.2 
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2.2.2 Type II Dilemma Zone (Indecision Zone or Option Zone) 

To account for variability in driver behavior, researchers defined a second type of 

dilemma zone. Also referred to as “indecision” or “option zone,” the Type II dilemma zone is 

based on a probabilistic approach to driver decision making at the onset of yellow. In this zone, 

drivers could either stop comfortably or clear the intersection before the end of yellow, thus 

resulting in the probabilistic nature of the zone. According to the literature search conducted for 

this report, ITE technical committee first documented Type II dilemma zones in a technical 

report by the Southern Section of ITE (ITE Technical Committee 1974). A driver on a high 

speed roadway encounters a dilemma on whether to stop or proceed through an intersection at 

the onset of yellow. As a result of the variability previously described, the Type II dilemma zone 

exists at the onset of every yellow indication. An incorrect decision to stop when it would have 

been safer to proceed can lead to a severe rear-end collision. Conversely, an incorrect decision to 

proceed through the intersection could lead to running a red light and a possibly causing a right 

angle collision. Figure 2.3 illustrates the Type II dilemma zone. 

 

 

 

 

 

 

Figure 2.3 Illustration of Type II dilemma zone 
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Zeeger (1977) defined the type II dilemma zone as “…the road segment where more than 

10 percent and less than 90 percent of the drivers would choose to stop.” Researchers have 

attempted several different approaches to characterizing the indecision zone boundaries. Zeeger 

(1974) used a frequency-based approach to collect data on drivers’ stopping decisions at 

specified distances and speeds in order to develop a cumulative distribution function. The 

dilemma zone boundaries were quantified as the distance and speed or time to the intersection. 

At the onset of yellow, a driver can choose from two mutually exclusive courses of 

action: stop or go. The decision process can therefore be modeled by binary discrete choice 

models. Sheffi and Mahmassani (1981) modeled the driver decision process with a probit model 

to significantly reduce the sample size required for estimating dilemma zone boundaries. A 

driver’s perceived time to reach the stop bar, T, randomly chosen from a population, was 

modeled as a random variable, 

                                                                          

 (2.4) 

where, 

t is the measured time to the stop bar at a constant speed;  

the error term,  , designating the differences in driver’s perception, is a random variable 

assumed to be normally distributed.  

 

Sheffi and Mahmassani (1981) hypothesized that drivers would choose to proceed 

through the intersection if T was less than a critical value, Tcr. The critical time, Tcr, was also 

modeled as a normally distributed random variable accounting for a driver’s experience, 

perception of acceleration rates, and aggressiveness: 
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                                                                         (2.5) 

where, 

 tcr, is the mean critical time; 

 the error term,  , is also normally distrusted across the driver population.  

 

The probability of a random driver choosing to stop, PSTOP (T), is given by the probit equation: 

 

                                                        {     }    (
      

 
)  (2.6) 

where, 

 σ = √  
      

         . 

 

In comparison to the required 2,000 observations necessary to stabilize dilemma zone 

curves graphically (Mahmassani et.al. 1979), the previously described model was shown to 

stabilize at approximately 150 observations. Similar results for the stability of the probit model 

were demonstrated by Sharma et al. (2011) 

Advantages of the model described above include the fact that dilemma zone curves are 

directly calculated from the model and a small sample size of only 150 observations is required 

to model dilemma zone curves 

In addition to the probit model, dilemma zone boundaries have been estimated with other 

models, primarily the logit model. Similar to the probit model, the logit model is a binary 

discrete choice model. Recent studies using logit to develop probability of stopping curves 
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include Bonneson and Son (2003), Gates et al. (2006), Papaioannou (2007), and Kim et al 

(2008). Rakha et al. (2007) used an empirical model to develop driver probability of stopping.  

Elmitiny et al. (2009) used tree-based classification to model the driver stop/go decisions. As a 

method of splitting data, classification trees are effective for segmenting the data into smaller 

and more homogeneous groups. Elmitiny et al.(2009) split the data based on distance to the 

intersection and speed at the onset of yellow; position of vehicle (leading or following); and 

vehicle type. Statistical comparisons can be made based directly on the various nodes defined by 

the researcher. For example, the same study revealed that drivers in the following position were 

more likely to make go decisions and run the red light than were drivers in the leading position, 

potentially exposing them to an increased risk of a rear-end crash. 

Due to the dynamic nature of the decision dilemma zone, studies have examined 

variables contributing to driver decisions to stop or proceed through the intersection. Gates et al. 

(2006) observed that heavy vehicles had a higher probability than cars to proceed through the 

intersection. Similar results were observed by Wei et al (2009). Sharma (2011) proposed that the 

probability of stopping was a function of the  acceleration required to cross the stop bar. Kim et 

al. (2008) proposed that yellow-onset speed, distance from the stop line, time to stopbar, and 

location of the signal head significantly affected driver stopping decisions. Figure 2.4 shows the 

variation in the dilemma zone boundaries based on previous findings for vehicles approaching an 

intersection at 50 mph. 
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Figure 2.4 Dilemma zone boundaries (50 mph) 

 

The statistical methods for calculating the traditional surrogate safety measure of the 

number of vehicles in the dilemma zone are sound; however, as implied by figure 2.4, the 

variations that occur in the defined boundaries are a result of the differences in dilemma zone 

definitions, types of drivers, and environmental and geometric layouts of the investigated sites. 

Site-specific dilemma zone boundaries are ideal for assessing crash risk, but this method of 

examining safety does not quantify the level of risk at different locations in the dilemma zone, 

since it describes drivers either as at-risk (in the dilemma zone) or free from risk (outside of the 

dilemma zone). 
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2.3 Effects of Yellow Length on Driver Behavior 

Studies have also examined impact on driving behavior as a function of yellow interval 

duration. In his comparison study of intersections equipped versus not-equipped with flashing 

green, Knoflacher (1973) concluded that a decrease in right-angle crashes corresponded to 

increases in the duration of yellow. The effects of yellow interval duration on stopping have also 

been studied. Lengthy yellow intervals were found by Van der Horst and Wilmink (1986) to 

cause poor driving behavior for last-to-stop drivers at intersections. Instead of being presented 

with a red indication as they approached the stop line, drivers were stopping while the light was 

still yellow; the same drivers were inclined to proceed through the intersection the next time they 

approached it. Van der Horst and Wilmink (1986) found that drivers adjusted their stopping 

behavior as a function of longer change intervals. The probability of stopping for drivers 4 s 

from the intersection decreased from 0.5 for a yellow length of 3 s, to 0.34 for a yellow length of 

5 s. Reductions in red light running (RLR) were found to decrease up to 50% for increases in 

yellow ranging from 0.5-1.5 s, as long as the yellow duration did not exceed 5.5 s. Koll et al. 

(2004) concluded that early stops should reduce the probability of right-angle collisions. 

Contrary to the previous results, Olson and Rothery (1962) concluded that driver 

behavior did not change as a function of different yellow phase durations. Studies have also 

shown that overly-long amber can lead to greater variability in driver decision making, and could 

potentially increases rear-end conflicts (Olson and Rothery 1962; May 1968; Mahalel and 

Prashker 1987). Mahalel and Prashker (1987) noted a potential increase in the indecision zone 

for a lengthy “end-of-phase” warning interval. They observed an increase in the indecision zone 

with no flashing green from the normal zone of 2-5 s to a zone of 2-8 s for a 3 s yellow that was 
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preceded by a 3 s flashing green; the authors presented evidence of an increased frequency of 

rear-end crashes due to the increase in the indecision zone.  

2.4 Mitigation of Dilemma Zones 

2.4.1 Green Extension 

Advanced detection systems involve placing several loop detectors upstream of the 

intersection to detect approaching vehicles and extend the green. These detectors communicate 

with a computer that searches the signal controller to determine, based on vehicles’ measured 

speeds, whether a green extension is required. Ideally, the green phase of the high speed 

approach is extended until there is no vehicle in the dilemma zone; however, a maximum green 

time is provided for this operation in order to avoid excessive delays to the cross street traffic. As 

long as they are discharging at saturation flow rate, all phases are allotted green, reducing delay. 

This is an all-or-nothing approach: dilemma zone protection is provided to the high speed 

vehicles prior to the maximum green time being reached, at which time the protection is 

removed. Developed to reduce the number of trucks being stopped at high speed rural 

intersections, the Texas Transportation Institute’s (TTI) Truck Priority System is an example of a 

green extension system (1997). However, the system does not specifically provide dilemma zone 

protection. The system extends the phase by as much as 15 s past maximum green before 

reaching max-out, at which time dilemma zone protection is removed. Another example of a 

green extension system is Sweden’s LHORVA system (1993). 

2.4.2 Green Termination 

Green termination algorithms are relatively new, and the systems implementing them 

exist at only a few intersections. These systems attempt to identify an appropriate time to end the 

green phase by predicting the value of a performance function for the near future. The objective 
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is to minimize the performance function, which is based on the number of vehicles present in the 

dilemma zone and the length of the opposing queue. The application of these systems has been 

limited, and little quantitative data exists regarding the trade-off between efficiency, cost, and 

detector requirements. 

2.4.3 D-CS 

Texas Transportation Institute’s Detection-Control System, or, D-CS, is a state-of-the-art 

system that has been implemented at eight intersections in Texas, U.S., and three in Ontario, 

Canada (2007). D-CS uses a green termination algorithm. The D-CS algorithm has two 

components: vehicle status and phase status. A speed trap sufficiently distant from the 

intersection (~ 800-1000 ft) is used to detect the speed and vehicle length of each vehicle. The 

projected arrival and departure time of each vehicle in its respective dilemma zone (based on 

speed and vehicle length) is used to maintain the “dilemma-zone matrix.” This matrix is updated 

every 0.05 s. The phase status component uses the dilemma-zone matrix, maximum green time, 

and number of calls registered on opposing phases to control the end time for the main street 

green phase. The phase status is updated every 0.5 s. 

Bonneson et al. (2005) observed reductions in the frequency of red-light violations at 

almost every approach at DC-S-equipped intersections. Overall, violations were reduced by 58%, 

with a reduction of about 80% for heavy vehicles. D-CS reduced violations 53% and 90% when 

replacing systems that used multiple advance loop detection and systems with no advance 

detection, respectively. On the approaches controlled by D-CS, severe crashes were reduced by 

39%. Intersection operation improved at almost every approach at the five intersections studied. 

Reductions in control delay and stop frequency were 14 % and 9 %, respectively. Most likely, 

the reductions were due to D-CS’s comparative operational efficiency relative to the previous 

detection and control strategies used at these intersections. 
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2.4.4 SOS – Self Optimizing Signal Control 

Sweden’s SOS system is another green termination algorithm designed for isolated 

intersections. Similar to D-CS, the system utilizes detectors in each lane to project the position of 

vehicles as they approach the intersection. The Miller algorithm calculates the cost of ending the 

green immediately or in t seconds (Kronborg 1997). Calculations are performed for different 

lengths of t, for example, 0.5 s up to 20 s. The algorithm evaluates three factors: reduction in 

delay and stops for vehicles using the green extension, increased delay and stops for opposing 

traffic, and increased delay and stops for vehicles that cannot use the green extension and have to 

wait for the next green period. In Kronborg (1997), the percentage of vehicles in the option zone 

was reduced by 38%. Additionally, the number of vehicles exposed to the risk of rear-end 

collision decreased by 58%.  

2.4.5 Wavetronix SmartSensor Advance 

 Using digital wave radar, the Wavetronix SmartSensor Advance with SafeArrival 

technology is one of the newest vehicle detection based systems designed to improve dilemma 

zone protection (Smart Sensor Advance 2011). The system continuously tracks vehicle speed 

and range to estimate the time of arrival to the stop bar. SmartSensor Advance formulates the 

position and size of gaps in flowing traffic to adjust the physical location of gaps to extend the 

green time if necessary to provide safe passage. In a comparison study of dilemma zone 

protection systems, the Wavetronix system provided a greater reduction in the number of 

vehicles in the Type II dilemma zone than did inductive loops (Knodler 2009). The SmartSensor 

Advance decreased RLR incidents by more than 3 times the rate of the inductive loop system. 

SmartSensor advance shows potential for early detection of heavy vehicles; this property could 

be used to design different protection zones based on vehicle type. 
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2.4.6 Advance Warning 

Placed upstream of high speed signalized intersections, AWF provides drivers with 

information regarding whether to prepare to stop at the upcoming traffic signal or to proceed 

through the intersection. Specifically, AWF is designed to minimize the number of vehicles 

trapped in their respective dilemma zones at the onset of yellow (Messer 2003). AWF have been 

found to improve dilemma zone protection in the state of Nebraska. McCoy and Pesti (2003) 

used advanced detection and AWF to develop an enhanced dilemma zone protection system. The 

system was found to reduce the number of max-outs, which result in reduced of dilemma zone 

protection. Gibby et al. (1992) concluded from an analysis of high-speed signalized intersections 

in California that AWF significantly reduced accident rates. Approaches having AWF displayed 

lower total, left-turn, right-angle, and rear-end accident rates. Sayed et al. (1999) calculated the 

reduction in total and severe accidents at intersections with AWF to be 10% and 12%, 

respectively. 

2.4.6.1 Advanced warning’s effects on RLR 

Farraher et al. (1999) observed red light running and vehicles speeds in Bloomington, 

Minnesota. Installation of AWF resulted in a 29% reduction in red light running, a 63% 

reduction in truck red light running, and an 18.2% reduction in the speed of red light running 

trucks. In addition, the TTI developed an Advanced Warning for End-of-Green System 

(AWEGS), which utilized a sign (text or symbolic), two amber flashers, and a pair of advanced 

inductive loops (Messer et al. 2003). The system, capable of identifying different classifications 

of vehicles (e.g. car, truck), has been found to decrease delay due to stoppages at traffic signals 

and provide extra dilemma zone protection for high-speed vehicles and trucks. Results showed a 

reduction in RLR by 38%-42% percent in the first 5 s of red.  
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Although the consensus surrounding AWF is that the system provides safety benefits, 

several concerns have also been raised. For example, Farraher et al. (1999) detected that drivers 

running red lights entered speeds above the speed limit, increasing the risk of crash for opposing 

traffic. Pant and Huang (1992) evaluated several high-speed intersections with AWF, detecting 

increases in vehicle speed as traffic signals approached the red phase; thus, the authors 

discouraged the use of Prepare to Stop When Flashing (PTSWF) and Flashing Symbolic Signal 

Ahead (FSSA) signs along tangent intersection approaches. Further testing performed by Pant 

and Xie (1995) at two intersections verified these findings.  

Flashing green systems are similar to AWF systems, and have been implemented and 

tested thoroughly in Europe and Israel. Knoflacher (1973) studied decelerations and accidents at 

intersections equipped with and without flashing green systems, finding that intersections 

implemented with flashing green systems had higher deceleration rates and increases in the 

number of rear-end collisions. In a simulated study comparing driver responses at intersections 

with flashing green, Mahalel et al. (1985) noted a significant increase in erroneous decisions at 

the onset of yellow. In particular, inappropriate stop decisions at intersections with flashing 

green doubled to 77%  in comparison to the 38% observed at intersections lacking the flashing 

green interval. This increase in inappropriate stops caused a considerable shift in the probability 

of stopping curves. Koll et al. (2004) compared the effects of flashing green on 10 approaches in 

Austria, Switzerland, and Germany. The examined safety impact was the amount of yellow and 

red stop line crossings observed. A substantial increase in the number of early stops was found in 

Austria. A larger option zone (an area where drivers could both proceed or stop safely) increased 

as a result.  
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2.5 Traffic Conflicts 

As previously mentioned, traditional surrogate measures of safety (such as the number of 

vehicles in the dilemma zone) fail to quantify the risk of a crash. Meanwhile, traffic conflicts 

have demonstrated usefulness as indirect measures with which to evaluate the safety of an 

intersection. Figures 2.6a to 2.6c contrast the present surrogate measure of safety with the 

proposed surrogate measure of safety. Widely used green extension systems are all-or-nothing 

approaches: all vehicles on the high-speed approaches are cleared until the maximum green time 

is reached, but at the end of the maximum green time, none of the vehicles on the high-speed 

approach are protected. As shown in figure 2.5a, these systems do not include a metric to 

measure the cost of the risk of crash. Green termination systems use the number of vehicles in 

the dilemma zone as a surrogate measure for quantifying the cost of risk. The number of vehicles 

is a rank-ordered metric, shown in figure 2.5b, where the cost of one vehicle in the dilemma zone 

is less than the cost of two vehicles in the dilemma zone; but the cost is independent of the 

positions of vehicles in the dilemma zone. Sharma (2011) modeled the dilemma zone hazard 

using the observed probability of stop and go at the onset of yellow. The probability of making 

an erroneous decision was used as the probability of traffic conflict. Dilemma hazard functions 

obtained for vehicles traveling at 45 mph, as estimated for the study site at Noblesville, IN, are 

shown in figure 2.5c. The probability of conflict curves developed by Sharma included single 

passenger vehicles only. The current research develops the dilemma hazard function for heavy 

vehicles. It should be noted that the dilemma hazard function can be further enhanced by adding 

severe conflict boundaries using acceleration and deceleration thresholds. 
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a) Safety cost evaluation in current green extension systems 
 
 

 

 

 

 

 

b) Safety cost evaluation in advanced green termination systems 

Figure 2.5 Comparison of traditional and proposed surrogate methods of safety 

 

 

c) Proposed evaluation of safety cost 

Figure 2.5 (cont’d.) Comparison of traditional and proposed surrogate methods of safety 
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2.5.1 Traffic Conflict Technique 

Over the past four decades, the traffic conflict technique (TCT) has evolved, 

demonstrating its usefulness for indirectly evaluating the safety of intersections. The technique 

originated from research performed at the General Motors laboratory in Detroit, MI, being used 

to  identify safety problems relating to vehicle construction. Perkins and Harris (1968) defined a 

conflict as “The occurrence of evasive actions, such as braking or weaving, which are forced on 

the driver by an impending crash situation or a traffic violation;” they categorized the conflicts 

into left-turn conflicts, cross-traffic conflicts, weave conflicts, and rear-end conflicts.  

TCT gained popularity as research efforts attempted to establish a direct relationship 

between conflicts and crashes (Baker 1972; Spicer 1972; Cooper 1973; Paddock 1974). Research 

has made clear that conflict data is a much faster method of data collection than waiting for an 

actual crash history to develop; for this reason, conflict data, as opposed to crash data, allows 

researcher to make a determination regarding the safety of a specific intersection rather rapidly. 

This allows for information regarding the safety of an intersection to be collected rather quickly. 

Cooper and Ferguson (1976) calculated the ratio of the rate of serious conflicts to the rate of 

crashes, deriving a figure of approximately 2,000:1. A recent study by the FHWA (2008) found 

the ratio of traffic conflicts to actual crashes to be approximately 20,000:1. In addition to more 

rapid data collection, TCT facilitates the quick identification of the safety deficiencies at 

intersections. Thus, TCT allows traffic engineers the opportunity to provide proactive safety 

improvements at intersections instead of waiting for crash histories to evolve.  

 Questions regarding TCT have been raised by several researchers. Glennon et al. (1977) 

expressed concern over the use of the TCT technique, stating that the reliability of TCT for 

estimating crash potential is questionable.  The same authors found that for every study in favor 
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of TCT, there was a study that opposed it; they argued that the ability to predict the number of 

crashes at an intersection was extremely improbable given that conflicts and crashes are random 

events.  

Although concerns have been raised regarding the use of TCT, recent studies have 

continued to advocate its use as a surrogate measure of safety. Glauz et al. (1985) investigated 

two types of expected crash prediction rates, one based on conflict ratios and the other based on 

crash histories. The study determined the difference to be statistically insignificant; thus, an 

estimate of the expected crash rates using traffic conflicts can be as accurate and precise as an 

estimate predicted by crash history. Hyden (1987) concluded that conflicts and crashes did in 

fact share the same severity distribution based on time-to-accident (TA) and speed values. The 

use of traffic conflict as a surrogate measure for traffic safety in micro-simulation has been 

advocated by Fazio et al. (1993), and by Gettman and Head (2003), who performed a detailed 

use-case analysis. 

2.5.2 Traffic Conflicts at the Onset of Yellow 

Zeeger (1977) identified six conflicts that can occur at the onset of yellow. The following 

definitions of the six conflicts were used during the conflict analysis performed as part of this 

report: 

 Red light runner (RLR): A red light violation was defined as occurring when the front 

of the vehicle was behind the stop line at the onset of red. 

 Abrupt stop: An abrupt stop occurs when a vehicle could successfully clear the 

intersection but decides to stop. Abrupt stop conflicts can be viewed visually and 

calculated mathematically based on the onset of yellow distance and speed. 
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 Swerve-to-avoid collision: Classified as an erratic maneuver that occurs when a 

driver swerves out of their lane to avoid hitting the vehicle stopped at the light in 

front of them. 

 Vehicle skidded: This is a more severe case of an abrupt stop where the vehicle’s 

wheels “lock-up” in order to stop. This conflict can be heard audibly. 

 Acceleration through yellow: Acceleration through yellow is identified either by 

being heard audibly or through mathematical calculation. Each vehicle’s distance is 

projected at the onset of red based on the onset of yellow distance and vehicle speed, 

assuming constant speed. Acceleration through yellow conflict is assigned if the 

vehicle successfully crosses the stop bar but would not have done so if based on the 

constant speed projection. 

 Brakes applied before passing through: This conflict can be viewed visually when, at 

the onset of yellow, the driver applied the brakes before passing through the 

intersection. It indicates the indecisiveness of drivers when approaching the 

intersection.  

2.6 Dilemma Zone Hazard Models 

Recently, studies have quantified the level of risk associated with being in the dilemma 

zone by developing dilemma hazard models. The recently developed dilemma hazard is a new 

and potential measure of traffic conflict. Li (2009) validated and calibrated the dilemma hazard 

model based on an approach developed by the American Society of Civil Engineers (ASCE). In 

order to calculate the dilemma hazard, the dilemma hazard model compares driver decisions and 

actual driving capability as a function of Time-to-Intersection (TTI) at the onset of yellow. The 
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approach uses driver decisions at the onset of yellow, their actual capabilities based on vehicle 

kinematics, and previously reported acceleration and deceleration rates. The collected data was 

simulated using Monte Carlo simulation to establish dilemma hazard values within the dilemma 

zone boundaries of 2-5 s (Li 2009). Models were created for single vehicle and multiple (two) 

vehicle scenarios. Results of the simulation, shown in figure 2.6, illustrate the effect of signal 

timings on the dilemma hazard. 

 

 

Figure 2.6 Dilemma hazard curves for various yellow and all-red clearance intervals (Li 2009) 

 

Sharma et al. (2011) provided theoretical justification for using the probability of 

stopping to estimate the probability of conflict for single vehicles at high-speed intersections. A 

detailed discussion of this topic is provided in the following chapter. 
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2.7 Summary 

The development of knowledge regarding dilemma zones and traffic conflicts has 

continuously progressed. The traditional surrogate measure of safety—the dilemma zone—

denotes the region of risk, but does not quantify the level of risk. Recently, the dilemma hazard 

model and dilemma hazard function have attempted to quantify the level of risk associated with 

being in the dilemma zone at the onset of yellow. The current study aimed to identify the impact 

of providing additional information on driver stop and go decision making. The insights gained 

were used to develop the prototype YODA system. 
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Chapter 3 Data Collection 

3.1 Introduction 

To achieve as thorough an analysis as possible, five locations were selected for data 

collection, and a sixth site was evaluated for comparison. A combination of radar based detectors 

and video was used to continuously track vehicles approaching high-speed signalized 

intersections. This chapter describes the data collection locations, equipment setup and 

calibration, and video processing tasks. 

3.2 Data Collection Sites 

This section describes the six studied intersections: 

3.2.1 US 77 and Saltillo Rd. 

The first intersection studied was the northbound approach of US 77 and Saltillo Rd. 

Located east of Lincoln, Nebraska, US Highway 77 runs north and south. The intersection has 

two through lanes and both a left and right turn lane. Two PTSWF flashers are positioned on 

both sides of US 77, 650 ft. from the stop bar. The speed limit is 65 mph until approximately 

1,150 ft. before the intersection, when the speed limit changes to 55 mph.  

3.2.2 Highway 2 and 84th St. 

The second intersection was the high-speed signalized intersection of Highway 2 and 84
th

 

St. in Lincoln, Nebraska. Highway 2 is a major thoroughfare in Lincoln, particularly for heavy 

vehicles. The percentage of heavy vehicles at the studied intersection was 10%. The eastbound 

approach of Highway 2 has two through lanes, two left turn lanes, and a right turn lane. Two 

PTSWF signs, along with flashers, are positioned on both sides of Highway 2, 563 ft. from the 

stop bar. Figure 3.1 shows what a driver approaching the intersection sees.  
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Figure 3.1 View of advance warning flashers prior to intersection 

 

3.2.3 US 77 and Pioneers 

US 77 and Pioneers Blvd., located five miles north of US 77 and Saltillo, was the third 

intersection studied. The southbound approach of US 77 and Pioneers has two through lanes and 

one left turn lane. Two PTSWF flashers are positioned on both sides of US 77, 650 ft. from the 

stop bar. The speed limit is 55 mph along this stretch of US 77. 

3.2.4 Highway 34 and N79 

The last intersection studied in Lincoln was the westbound approach of Highway 34 and 

N 79. This intersection is northwest of Lincoln, with a speed limit of 60 mph. With no left turn 

lane and a turnoff for vehicles desiring to travel north prior to the intersection, the westbound 

approach has only two through lanes. In addition, the intersection is equipped with two PTSWF 

flashers, 650 ft. from the stop bar. 
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3.2.5 Highway 75 and Platteview Rd. 

Shown in figure 3.2 US 75 and Platteview Road, is located south of Bellevue, Nebraska. 

The southbound approach of US 75 and Platteview has two through lanes and both a right and 

left turn lane. Two PTWSF flashers are positioned on both sides of US 75, 438 ft. from the stop 

bar. Approximately 1,550 ft. upstream of the intersection, the speed limit changes from 60 mph 

to 55 mph. 

3.2.6 SR32 and SR 37 

The last site used for data analysis was the signalized intersection of SR 37 and SR 32 at 

Noblesville, Indiana. The southbound approach of SR 37 has two through lanes and both a right 

and left turn lane. The speed limit of SR 37 is 55 mph. Unlike the other five sites, this 

intersection does not have advance warning flashers. In addition, the wide area detectors (WAD) 

and camera were mounted on the mast arm, contrasting the previous locations that were on the 

side of the road. 

Table 3.1 presents some important site characteristics. Figure 3.2 presents aerial 

photographs of each site. 

Table 3.1 Detailed site characteristics 

 



 

 

 
 

 

 
 

 

 

F
ig

u
re

 3
.2

 A
er

ia
l 

v
ie

w
s 

o
f 

d
at

a 
co

ll
ec

ti
o
n
 s

it
es

S
it

e 
2
 –

 H
ig

h
w

a
y
 2

 a
n
d
 8

4
th

 S
t.

 

L
in

co
ln

, 
N

E
 (

S
E

B
 A

p
p

ro
ac

h
) 

S
it

e 
1
 –

 U
S

 7
7
 &

 S
al

ti
ll

o
 R

d
. 

L
in

co
ln

, 
N

E
 (

N
B

 A
p
p
ro

ac
h
) 

S
it

e 
4
 –

 H
ig

h
w

a
y
 3

4
 a

n
d
 N

o
7
9

 

(S
E

B
 A

p
p
ro

ac
h
) 

S
it

e 
5
 –

 U
S

 7
5
 &

 P
la

tt
ev

ie
w

 R
d
. 

B
el

le
v
u
e,

 N
E

 (
S

E
B

 A
p
p
ro

ac
h
) 

S
it

e 
3
 –

 U
S

 7
7
 &

 P
io

n
ee

rs
 B

lv
d
. 

L
in

co
ln

, 
N

E
 (

S
B

 A
p
p

ro
ac

h
) 

S
it

e 
6
 –

 S
R

 3
7
 &

 S
R

 3
2
 

N
o
b
le

sv
il

le
, 

IN
 (

S
B

 A
p
p

ro
ac

h
) 

33 



 

34 

3.3 Data Collection  

In order to maintain consistency during the collection period, data was collected only 

during good weather days. A variety of traffic conditions were examined by collecting data 

during both peak and off-peak hours. A summary of the dates and times of data collection at each 

site is shown in tables 3.2 and 3.3. Data was collected at six intersections using three different 

setups. This section will discuss the three different equipment setups and the calibration of each 

setup.  

 

Table 3.2 Summary of data collected at AWF locations 

 

 

 

Site Location Day Collected Hours Collected

July-07-2010 10:30 AM - 12:30 PM; 1:00 PM - 3:00 PM

July-09-2010 10:30 AM - 12:30 PM; 1:00 PM - 3:00 PM

July-15-2010 10:30 AM - 12:0 PM; 1:00 PM - 3:00 PM

July-16-2010 10:30 AM - 12:30 PM

July-19-2010 1:00 PM - 3:00 PM

July-20-2010 1:00 PM - 1:45 PM; 2:45 PM - 3:00 PM

November-08-2010 10:45 AM - 5:00 PM

November-15-2010 3:30 PM - 4:45 PM

November-16-2010 1:30 PM - 3:00 PM

November-17-2010 2:30 PM - 4:00 PM

November-22-2010 1:45 PM - 4:00 PM

November-23-2010 1:45 PM - 4:00 PM

September-29-2010 8:00 AM - 4:00 PM

September-30-2010 10:45 AM - 6:00 PM

October-13-2010 8:00 AM - 4:00 PM

October-14-2010 8:00 AM - 4:00 PM

October-20-2010 8:00 AM - 4:00 PM

October-21-2010 8:00 AM - 4:00 PM

November-23-2010 11:00 AM - 4:15 PM

November-18-2010 8:00 AM - 3:00 PM

November-19-2010 9:00 AM - 4:00 PM

US-77 & Saltillo Rd., Lincoln 

(Northbound)

US-77 & Pioneers Blvd., 

Lincoln (Southbound)

US-34 & N-79, Lincoln 

(Westbound)

Highway 2 and 84th St., 

Lincoln (Eastbound)

US-75 & Platteview Rd., 

Bellevue (Southbound)
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Table 3.3 Summary of data collection at Noblesville 

 

 

3.3.1 Data Collection Setup 

Highway 2 and 84
th

 St. was instrumented with three WAD to record individual vehicle 

information. Two SmartSensor Advance WAD, utilizing digital wave radar technology and 

installed on the research pole, tracked vehicles upstream and downstream of the pole, recording 

Site Location Day Collected Hours Collected

September-12-2007 6:00 AM - 9:00 AM

September-20-2007 6:00 AM - 7:00 AM

September-28-2007 6:00 AM - 12:30 PM & 6:00 PM - 8:00 PM

October-02-2007 6:00 AM - 10:00 AM

October-03-2007 1:00 PM - 4:00 PM & 6:00 PM - 8:00 PM

October-05-2007 9:00 AM - 11:00 AM & 7:00 PM - 8:00 PM

October-09-2007 3:00 PM - 4:00 PM & 6:00 PM - 8:00 PM

October-12-2007 3:00 PM - 8:00 PM

October-29-2007 6:00 PM - 8:00 PM

October-30-2007 6:00 AM - 10:00 AM & 7:00 PM - 8:00 PM

November-01-2007 6:00 AM - 12:00 PM & 6:00 PM - 8:00 PM

November-02-2007 6:00 AM - 11:00 AM &3:00 PM - 5:00 PM

November-09-2007 8:00 AM - 11:00 AM

November-27-2007 7:00 PM - 8:00 PM

February-28-2008 6:00 AM - 6:00 PM

March-11-2008 9:00 AM - 2:00 PM

March-12-2008 12:00 PM - 7:00 PM

March-23-2008 10:00 AM - 8:00 PM

March-24-2008 8:00 AM - 12:00 PM

April-02-2008 6:00 AM - 8:00 AM

April-05-2008 6:00 AM - 9:00 AM

April-06-2008 6:00 AM - 7:00 PM

April-07-2008 6:00 AM - 8:00 AM

April-14-2008 6:00 AM - 3:00 PM & 5:00 PM - 8:00 PM

April-15-2008 6:00 AM - 2:00 PM

April-21-2008 7:00 PM - 8:00 PM

April-22-2008 6:00 AM - 6:00 PM

April-28-2008 10:00 AM - 1:00 PM

April-29-2008 6:00 AM - 8:00 PM

April-30-2008 6:00 AM - 8:00 PM

SR37 and SR32, Noblesville 

(Southbound)
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their distance, speed, lane, and vehicle length up to a distance of 500 ft. A SmartSensor HD acted 

as the midstream sensor and recorded vehicle information equidistant with the research pole. In 

addition to recording speed, the SmartSensor HD identified the lane in which a vehicle was 

traveling, and also recorded vehicle length. The overall data collection schematic is shown below 

in figure 3.3. 

 

 

Figure 3.3 Schematic of data collection at Highway 2 and 84th St. 

 

Figures 3.4 and 3.5 display images of the SmartSensor Advance and SmartSensor HD, 

respectively. Two Click! 500 programmable controllers were used in the field. Signal status was 

collected by a Click! 500 installed at the traffic cabinet and sent through fiber to a second Click! 

500 installed on the research pole. The second Click! 500 extracted the data from three Click! 

200 s, one for each WAD, and consolidated the information. 

A.   Sensor Site

A1. Radar Sensors

A2. Video Camera

A3.  Pole-Cabinet

B.    Detection Zone

E.    Signal cabinet

B

A

A1

A2

A3

C

    DATE             TIME         ID   RANGE  VEL    LANE  VEH

2009/04/06  13:02:17.998 1000   300        48       NB     Truck
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Figure 3.4 Visualization of Wavetronix SmartSensor Advance 

 

 

Figure 3.5 Visualization of Wavetronix SmartSensor HD 

 

Time synchronization was maintained with reference to the research pole’s Click! 500 

real time clock. The phase-reading Click! 500 receives updates from the research pole’s Click! 

500 over fiber optic cable. The time stamping for all three WAD was performed by the research 

pole’s Click! 500. The upstream and downstream latency was 21 ms, while the midstream sensor 

latency was 6ms.  
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In addition to the three WAD installed at the data collection site, three cameras were 

placed to record vehicle movement through the site. Two Axis 232D+ dome cameras, shown in 

figure 3.6, were mounted on the research pole. These cameras recorded vehicular movement 

upstream and downstream of the research pole, while the third Axis camera was mounted on the 

mast arm. Figure 3.7.7 illustrates the three vehicular movement views recorded. 

 

 

Figure 3.6 Visualization of Axis 232D+ dome camera 

 

 

Figure 3.7 Display of recorded vehicular movement through data collection site 
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Data from the WAD was collected through placing a serial cable connecting the RS-232 

on the Click! 500 to a CPU in the research pole. Matlab was used to open the serial connection 

and save the data. The three cameras were displayed on the computer screen using Active 

Webcam, which captured images at up to 30 fps. Finally, Hypercam 2 was used to record the 

screen captures from Active Webcam, as shown in figure 3.7. 

3.4 Validation 

The WADs were validated against the Xsens MTi-G, an integrated GPS and Inertial 

Measurement Unit (IMU). In addition to capturing the vehicle position from the GPS unit, the 

MTi-G provided measurement of vehicle acceleration in the X, Y, and Z direction at a rate of 

100 data points a second. Setup of the MTi-G is shown below in figure 3.8. 

 

 

 Figure 3.8 MTi-G Setup   
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A compact car was used as the vehicle for the validation runs. The times were manually 

synced using a handheld GPS device. An example of the tracking performance of the MTi-G and 

WAD is shown in figure 3.9. The root mean square error (RMSE) in distance was reported as 9.6 

ft.  

 

 

Figure 3.9 Example comparison between WAD and Xsens 

 

3.5 Mobile Trailer Data Collection Setup 

Data from the remaining sites located in Nebraska were collected using a portable trailer, 

as shown in figure 3.10. To use the portable trailer required good weather conditions, as strong 

continuous or gusty wind would cause the trailer’s mast arm to sway. Data was collected on days 

when there was no precipitation and wind gusts speeds were below 10 mph. 
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Figure 3.10 Mobile data collection trailer 

 

Similar to the setup described in the previous section, the data collection trailer was 

equipped with three WAD. Two SmartSensor Advance WAD installed on the pole tracked 

vehicles upstream and downstream of the pole, with the SmartSensor HD acting as the 

midstream sensor. Two Click! 500 programmable controllers were also used. Signal status was 
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received from the Click! 500 installed at the traffic cabinet through the portable signal phase 

reader, shown below in figure 3.11. 

 

 

Figure 3.11 Safe Track portable signal phase reader 
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The signal phase reader communicated the signal phase status via radio to the portable 

sensor pole cabinet. This cabinet featured three Click! 200 s that collected the data from each 

detector and sent it to the Click! 500; thus, the Click! 500 in the pole cabinet received the data 

from the signal and all three detectors. Figure 3.12 displays the portable sensor pole cabinet. 

 

 

Figure 3.12 Portable sensor pole cabinet 

 

Time synchronization with the portable system was maintained with reference to the 

trailer’s Click! 500 real time clock. The phase-reading Click! 500 received updates from the 

trailer’s Click! 500 through the wireless link. When both of these systems were properly synced, 

drift was less than 70ms. Time stamping for all three WAD was performed by the trailer’s Click! 

500. The upstream and downstream latency was 21 ms, while the midstream sensors latency was 

6ms. The calculated drift in synchronization for the entire system was 97ms, obtained by adding 

the following component drifts:  
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 70ms for the phase information 

 21 ms for the upstream and downstream sensor 

 6ms for the midstream sensor 

The entire system had a time resolution accuracy of at least
 
1/10

th
 of a second. The data 

was pushed from the Click! 500 using the device’s serial port and a serial to USB converter that 

connected to a laptop. Matlab opened the serial port and saved the data in both .DAT and .txt 

files. The data was manually trothed through the use of a Mobotix Q24M camera (fig. 3.13). This 

fisheye camera was able to record high-resolution views, with a frame rate of up to 30 fps. As 

shown in figure 3.14 (next page), the camera was setup to view upstream, midstream, and 

downstream of the trailer. 

 

Figure 3.13 Mobotix Q24M camera 
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Figure 3.14 Mobile trailer data collection environment 

 

3.5.1 Mobile Trailer Validation 

The portable trailer WADs were validated against the MTi-G unit once; however, GPS 

runs were made using a handheld GPS device each day of data collection in order to ensure 

accurate vehicle tracking. A pickup truck was used for validation runs. The times were manually 

synced using a handheld GPS device. An example of the tracking performance of the MTi-G and 

WAD is shown in figure 3.15. The RMSE in distance was reported to be 12.4 ft.  
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Figure 3.15 Example comparison between WAD, GPS, & Xsens 

 

3.6 Noblesville Site Data Collection Setup 

 In contrast to the previously studied sites, the Noblesville site had a single WAD, as well 

as a single camera mounted on the signal mast arm. The WAD and video output were recorded 

on a computer at a rate of 30 frames per second, as shown in figure 3.16. 
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Figure 3.16 Data collection environment at Noblesville, IN 

 

3.6.1 Noblesville Site Validation  

The WAD was validated against a handheld GPS device after installation. Three vehicle 

types—a sedan, a pickup truck, and an eight-passenger van—were used as probe vehicles to 

collect data. Ten runs were conducted for each vehicle type. The time was dynamically 

synchronized to 0.01 s precision across the data collection computer and GPS device. The RMSE 

in distance was reported as 7.3 ft. An example of the vehicle tracking by GPS and WAD is 

shown in figure 3.17. A detailed analysis of the performance of the WAD can be found 

elsewhere. 
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Figure 3.17 Example comparison between WAD and GPS  

  

3.7 Data Reduction 

As a result of the video and WAD data simultaneously being captured by Hypercam 2, 

data reduction was straightforward at most of the sites. However, there were a few dates at 

Highway 2 and 84
th

 St. when only the video was recorded on the computer screen, with the 

WAD data being recorded in a text file. Nevertheless, the data was processed in the same 

manner. The videos were viewed, and if any vehicles were present at the onset of yellow, their 

downstream Id, range, speed, decision to stop/go, and type of vehicle were recorded. Vehicles 

were also classified by position: single, leader, or follower. Since the dilemma zone has been 

defined as the approach area 2.5-5.5 s upstream of the intersection, a time of 3 s was used as the 

critical headway in determining the interaction between two vehicles. Vehicles with headway 

values greater than 3 s would not both be in the dilemma zone at the same time; therefore, these 
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vehicles were classified as single vehicles. If the headway was less than 3 s, the interaction was 

classified as leader (for the first vehicle) and follower (for any vehicle after the leader). In 

addition, if the driver ran the red light, it was noted. A sample data reduction form is shown in 

figure  3.18 below: 

 

 

Figure 3.18 Sample data reduction form 

 

Other than the Noblesville site, each vehicle was assigned three distinctive vehicle Ids as 

a result of using three WAD to track the vehicles. The downstream Id was primarily the only Id 

recorded; however, there were drops in the WAD coverage area between the upstream and 

midstream, and midstream and downstream detectors, of approximately 50 and 100 ft, 

respectively. If at the onset of yellow a vehicle was present between the midstream and 

downstream detectors, the data for all detectors was fit using either a linear or two-degree 

polynomial, as shown in figures 3.19 and 3.20. 

Wave

Downstream ID Range Speed Stop/Go Conflict Type

11/15/2010 42:22.4 445 94 63 Go Truck S

11/15/2010 44:22.4 703 326 36 Stop Car S

11/15/2010 48:22.5

11/15/2010 50:22.5

11/15/2010 52:22.5 555 179 47 Go Semi S

11/15/2010 54:22.5 685 23 58 Go Minivan S

11/15/2010 58:22.6 918 102 48 Go Car L

11/15/2010 920 226 52 Go Car F

11/15/2010 00:22.6

11/15/2010 02:22.6 1038 194 47 Go Car S

Date

Vehicle present control region

Green end

Lane SB
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Figure 3.19 Example of linear fit to vehicle 

 

 

Figure 3.20 Example of two-degree polynomial fit to vehicle 
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3.8 Summary 

This chapter described the data collection and evaluation sites, along with the dates and 

times of collection. The equipment, software, and setup used in the field to collect the data were 

explained. In addition, figures presented the calibration of the three systems with GPS units. 

Finally, the method of data processing was described.  
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Chapter 4 Role of Information on Dilemma Hazard Function 

4.1Theory Underlying Driver Decision Making 

Driver behavior at the onset of yellow is essentially a binary choice process in which the 

driver chooses from two possible courses of action: stop or go (Sheffi and Mahmassani 1981). 

Let Tp be the time to the stop bar perceived by a driver randomly selected from the population; as 

a result of the variance in driver behavior based on several independent factors such as 

perception of the distance from the stop bar, perception reaction time, perception of the yellow 

interval based on past experience, etc., Tp can be modeled as a normally distributed random 

variable, as shown below in equation 4.1. 

 

                                               
 reqp TT

  (4.1)
 

where, 

Treq is the required time to stop bar;  

            :  is a random variable which is assumed to be normally distributed. 

 

Similar analyses have been performed using the perceived and required time to the stop 

bar and the perceived and required acceleration (Sheffi and Mahmassani 1981; Sharma et al. 

2010). If the perceived time to the stop bar is less than a certain critical time threshold, the driver 

decides to stop; if the time is greater than this threshold, the driver decides to go. The critical 

time threshold for a given site can be estimated by the probability of stopping curves. At the 

point at which the required time to stop bar is equal to the critical time threshold, the probability 

of stopping is 0.5. Under ideal weather conditions, and assuming the vehicles are passenger 
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vehicles, the critical threshold should be equal to the designed yellow time; this implies that if 

the perceived time to the stop bar is greater than the provided yellow time, the driver will decide 

to stop, whereas if the perceived time to the stop bar is less than the provided yellow time, the 

driver will decide to go. It should be noted that error in driver perception of yellow time can be 

added to driver perception of travel time error if we assume the yellow duration error to be 

normally distributed as well.  

Two other critical thresholds can be calculated for a driver approaching the intersection at 

the onset of yellow: the distance requiring severe deceleration and the distance at which a driver 

would accelerate heavily or run the red light. The following calculations were performed as 

examples of the acceleration and deceleration threshold, based on 85
th

 percentile acceleration and 

deceleration values derived from Sharma (2008). The distance at which a vehicle cannot proceed 

through the intersection without heavily accelerating or RLR is calculated by: 

 

                                                
 

 
                   (4.2) 

                                  
   

where, 

 speed is the speed of the vehicle at the onset of yellow (ft/s); 

 yellow is the length of yellow (s); 

 a is the 85
th

 percentile acceleration, 3.19 ft/s
2
 (Sharma 2008); 

 PRT perception reaction time of 1 s. 

 

For a speed of 80.667 ft/s (55 mph) and a yellow length of 4.9 s, the critical acceleration 

distance equals 420 ft. This distance will be referred to as the maximum passing distance for the 
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remainder of this report, and will represent the critical acceleration threshold. A vehicle at the 

onset of yellow upstream of this fixed distance, choosing to proceed through the intersection, 

will require heavy acceleration or will run the red light. Similarly, a fixed distance can be 

calculated where a vehicle will be require to decelerate heavily, as shown in equation 4.3.  

 

                                                 
      

   
          

                                      (4.3)                     
 

 

where, 

 d is the 85
th

 percentile deceleration, 14.41 ft/s
2
 (Sharma 2008). 

 

Again, using 80.667 ft/s (55 mph) and a 4.9 s yellow interval, the severe deceleration 

distance is computed to be 306 ft. A similar recommended severe deceleration rate of 14.76 ft/s
2
 

can be found in Malkhamah et al. (2005). A vehicle downstream of this distance choosing to stop 

will be required to decelerate heavily to stop prior to the stop bar. The two critical threshold 

distances previously calculated are shown in figure 4.1. 
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Figure 4.1 Critical distances along probability of stopping curve 

 

4.2Traffic Conflicts 

Drivers choosing to stop downstream of the severe deceleration distance or to proceed 

upstream of the maximum passing distance have made an erroneous decision. The consequences 

of a driver making an erroneous decision at the onset of yellow can lead to a conflict, and in the 

previously mentioned cases, a severe conflict. The probability of perceived conflict can be 

calculated using the critical thresholds and stopping probabilities, as shown below in equation 

4.4. 

 

       (4.4) 

where, 

Dreq is the required distance to perform chosen decision; 

Dt is the critical distance threshold dependent on yellow time. 
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Perceived conflicts can be classified as minor or severe, based on the magnitude of the 

acceleration or deceleration required to perform the chosen decision, and the typical ranges of 

acceleration or deceleration used by drivers. The acceleration or deceleration required to 

complete the chosen action therefore can be used to determine the severity of the evasive action. 

If the required acceleration or deceleration is within the typical operating ranges, a minor traffic 

conflict would likely occur; but if the required acceleration or deceleration is greater than the 

thresholds of the typical ranges, a severe traffic conflict would likely occur. Drivers in the zone 

of a minor conflict are more likely to experience minor traffic conflicts, such as abrupt stops, 

applying the brakes before proceeding, or accelerating through yellow. However, drivers in the 

zone of severe conflict are likely to have severe traffic conflicts such as RLR, swerving to avoid 

a collision, or vehicle skidding.  

4.3 The Effect of Information 

Providing drivers with information through AWF has been shown to alter probability of 

stopping curves (Koll et al. 2004). There are two potential impacts of providing information to 

drivers: (a) the probability of stopping curves become steeper due to reduced  perception error, as 

shown in figure 4.2a; note that threshold value is not affected, and both curves have the same 

midpoint. Ideally, the slope of the probability of stopping curve is infinity, implying that every 

driver makes the correct decision at the onset of yellow; (b) the threshold value (perceived 

duration of yellow) changes, thus, shifting the probability of stopping curve, as shown in figure 

4.2b; the probability of stopping curve could be shifted closer or farther from the intersection. 

Recalling that the probability of a conflict is dependent upon the probability of stopping, and that 

the two critical thresholds are fixed results in a shift in the probability of conflict curve, it 

follows that, if the probability of stopping curve were shifted closer to the intersection, the 
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probability of severe deceleration would increase. Conversely, a shift in the probability of 

stopping curve farther from the intersection would result in an increase in RLR. This research 

will examine the effects of information on the potential shift in the midpoint, as well as on the 

change in slope of the probability of stopping curves. 

 

 

a) Change in variance 

 

b) Change in threshold 

Figure 4.2 Effect of information provided to drivers 
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4.4 Data Analysis and Results 

4.4.1 Best Fit Model Parameters 

At the onset of yellow, a driver can choose from two mutually exclusive courses of 

action: stop or go. This decision process can therefore be modeled using binary discrete choice 

models. Based on the approach followed by Sheffi and Mahmassani (1981), a probit model was 

used to investigate the influential independent variables for driver decisions at each intersection.  

The independent variables tested are listed below: 

 time to stop bar; 

 distance to stop bar; 

 speed at onset of yellow; 

 deceleration required to stop the vehicle within the stop bar; 

 acceleration required by the vehicle to cross the stop bar prior to onset of red. 

An extensive analysis was performed on these variables in order to determine the set of 

instrumental variables affecting driver decisions. The maximum likelihood estimation technique 

was used to obtain estimates of the parameters using NLOGIT (2007). Models were compared 

using Akaike’s Information Criterion (AIC) (AIC 2009). AIC takes into account both the 

statistical goodness of fit and the number of parameters required to obtain the goodness of fit. As 

the number of model parameters increases, a penalty is imposed upon the model. The best or 

preferred model is the model that has the lowest AIC value. Results of the analysis showed that 

the best-performing model was time to stop bar and a constant, as shown in table 4.1. 
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Table 4.1 Probit model results 

 

 

4.4.2 Dilemma Zone Boundaries and Effect on Stopping 

The final estimated parameters were used to develop probability of stopping curves for a 

speed of 55 mph at each site, as shown below in figure 4.3. The probability of stopping curves 

revealed the effect of information provided to drivers by the AWF. The three Nebraska 

Department of Roads (NDOR) sites (Site 1, Site 3, and Site 4) and Site 6 were relatively similar, 

with Site 1 and Site 4 having essentially identical curves. As shown previously in table 3.1, Site 

1 and Site 4 operated identically, with the flashers starting 7 s before yellow and with a yellow 

time of 4.4 s. Site 6, the only site without AWF, had the longest probability of stopping and the 

largest dilemma zone. Information provided to the drivers at the Site 2 caused a dramatic shift in 

the probability of stopping. Under the authority of the City of Lincoln, Site 2 site is operated 

differently than the NDOR sites. 

AIC Value Log likelihood function

Site 1 0.43284 -32.62681

Site 2 0.51298 -110.0872

Site 3 0.44859 -35.23322

Site 4 0.42807 -28.82094

Site 5 0.52098 -62.34153

Site 6 0.28287 -386.5199
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Figure 4.3 Probability of stopping curves 

 

The main distinctions between Site 2 and the NDOR sites were, first, that the AWF at 

Site 2 were 87 ft closer to the stop bar than at the three NDOR sites; moreover, the sum of the 

yellow time and the amount of time before yellow when the advance warning flashers activate 

was 0.7 s longer at Site 2 than at Site 3, and 2.2 s longer than at Sites 1 and Site 4. 

It appears, as is illustrated in figure 4.4, that when drivers were presented with 

information (yellow time and time before yellow AWF activate) for a longer time period, their 

probability of stopping earlier increased. Site 2 and Site 3 presented information to drivers for 

the longest amount of time, while Site 6 did not present drivers with any information prior to the 

onset of yellow. 

Figure 4.4a illustrates the dilemma zone hazard curve at Site 4. The severe deceleration 

and maximum passing distance were the critical thresholds for severe conflicts. The risk of 

conflict increased until reaching the maximum passing distance. Figure 4.4a also illustrates that a 

large percentage of drivers were predicted to make erroneous decisions at the onset of yellow, 

based on the severe deceleration and maximum passing thresholds. In particular, a sizeable 
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percentage of drivers were predicted to either accelerate heavily or run the red light; thus, 

potentially causing a right angle collision.  

As shown below in figure 4.4b, the drastic shift in the probability of stopping at Site 2 

caused virtually every driver approaching the intersection to potentially have a severe conflict. 

Based on the yellow time of 5.6 s and the posted speed limit of 55 mph, a driver traveling at the 

speed limit could pass through the intersection from a distance of 485 ft at the onset of yellow. 

While the length of yellow significantly decreased the possibility of an RLR, the  information 

provided to the driver from the AWF was telling them otherwise, resulting in a significantly 

large number of predicted severe conflicts, such as abrupt stop, heavy deceleration, or vehicle 

skidding. Evidence that longer yellows decrease the percentage of RLR is also found in 

(Bonneson et al. 2002), while, similar to Koll et al. (2004), providing drivers with information 

leading to early stops can increase the possibility of severe rear-end collisions. 

As shown in figure 4.4c, when information was provided correctly, it decreased the risk 

for drivers approaching the intersection. The predicted severity risk of crashes at Site 3 site was 

significantly lower than at the other studied sites. 

 

 

Figure 4.4 Probability of severe conflicts at different sites 
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Weighted risk was calculated by first integrating the area under both severe conflict 

thresholds. An average of the integration was computed. Lastly, the proportion of vehicles within 

each speed category was multiplied by the averaged integration, resulting in a weighted average 

of risk for a driver approaching an intersection. The weighted average risk was found for both 

critical thresholds. Results of the risk analysis are shown in figure 4.5. As expected, Site 2 and 

Site 5 had displayed the largest rear-end crash risk, while Site 1 and Site 4 demonstrated the 

largest risk of red light running. 

Actual severe conflicts were totaled and proportioned for all site vehicles requiring a 

deceleration rate of 14.41 ft/
s
 or higher as well as the observed RLR. Similar to the weighted 

risks, a trade-off was found between the proportion of vehicles requiring severe deceleration and 

red light running, as shown in figure 4.6. The proportions of risks and conflicts at Sites 1, 2, 4, 

and 5 were almost in complete agreement with the calculated risks and accident histories. The 

calculated risks and proportions of severe conflicts displayed a good correlation; however, at Site 

3, the proportions switched. 

 

Figure 4.5  Calculated weighted risks 
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Figure 4.6  Proportion of vehicles performing sever deceleration or RLR 

4.5 Discussion 

Figures 4.4 a and b display a large percentage of drivers at risk of a severe conflict. 

Having such large percentages of drivers at risk of severe conflicts is problematic. Figure 4.7 

illustrates the probability of stopping under four different conditions. Curves A and D represent 

intersections where the majority of drivers performed erroneous decisions. Similar to the results 

from Site 2, drivers approaching the intersection represented by Curve A will put all the drivers 

at risk of severe stopping. Curve D shows that a significantly larger percentage of drivers were 

predicted to accelerate heavily or to run the red light. The stopping curve represented by Curve C 

was noticeably improved in terms of providing drivers with protection from severe conflicts, as 

the majority of drivers stop between the severe deceleration and maximum passing distances. 

Ideally, the probability of stopping curve would appear as shown in Curve B, where the decision 

dilemma zone boundaries are within the thresholds of severe deceleration and maximum passing 

distance, thus minimizing the risk of severe conflicts at the onset of yellow. 
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Figure 4.7 Hypothetical probability of stopping curves 

Finally, in comparison with previous literature (Koll et al. 2004; Elmitiny et al. 2009; 

Hurwitz 2009; Wei et al., 2009) the calculated perceived yellow time length versus actual length 

was plotted as shown in figure 4.8. Intersections with AWF, or, in the case of Koll et al. (2004), 

flashing green, were plotted separately from intersections that did not provide drivers with 

information. Four intersections from Hurwitz (2009) were graphed; however, the perceived time 

and actual yellow lengths for all four intersections was 4 s. Based on this sample of intersections, 

drivers approaching intersections without being provided information correctly perceived the 

time threshold, while drivers inaccurately predicted the time threshold at intersections providing 

them information. One of the reasons for this effect could be the fact that the information 

provided is not personalized, thus, it leads to more variability. The YODA system can help to 

alleviate this problem. The largest outliers from figure 4.8 were points A, B, and C, which 

represent Site 2, Site 5, and Koll’s studied sites in Austria. In addition, figure 4.8 displays the 

type of risk that associated with being above or below the line. The three previously mentioned 
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sites have the potential for increased rear-end crash risk, as these intersections all fall below the 

line. Conversely, any intersection above the line would have the potential for increased RLR 

risk. Therefore, while providing drivers with information has been shown to reduce accidents—

and in particular RLR (Gibby et al. 1992; Farraher et al. 1999; Messer et al. 2003), the current 

study suggests that providing information to drivers can increase the risk of accidents. In 

particular, the risk of stopping conflicts increased with information that was not personalize 

 

 

Figure 4.8 Comparison between actual and perceived yellow lengths 

 

4.6 Conclusions 

The results demonstrated that AWF systems potentially contributed to increases in both 

rear-end and RLR crash risks by providing non-personalized or incorrect information to drivers. 

The major insight garnered from the current study was that any information provided to a driver 

regarding stop and go decisions should be consistent with the actual duration of yellow time. If 
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the yellow time is longer that as implied by the AWF and the driver is incorrectly signaled to 

stop, the outcome is more confusion, resulting in higher-risk intersections. It should also be 

noted that when no information was provided, the critical time threshold for stopping was very 

close to the actual yellow duration. This shows that drivers usually were likely to stop when the 

time to the stop bar was greater than the yellow time, and were likely to go when the time to stop 

bar was less than the yellow duration. The next chapter presents the details of a prototype YODA 

system, developed for this study, which utilizes this concept to inform stop and go decisions; the 

YODA system provides personalized information to the driver based on the time to the stop bar 

and the remaining yellow time. 
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Chapter 5 Development of the YODA System Prototype 

 5.1 Introduction 

 The previous chapter provided a detailed discussion on the role of information in aiding 

driver decisions at the onset of yellow. The YODA system was designed to aid drivers by 

providing personalized information at the onset of yellow. The system collects phase status 

information from the traffic signal cabinet and obtains speed information from the requesting 

vehicle. If the requesting vehicle’s time to the stop bar is less than the time remaining to the end 

of the yellow phase, the vehicle is said to be at a low risk; in the opposite case, the vehicle is 

notified to reduce speed and prepare to stop. The architecture used by the YODA system is 

“V2I” (Vehicle to Infrastructure) (RITA 2012). With V2I, a Dedicated Short Range 

Communication (DSRC) (Armstrong Consulting, Inc., 2012) equipped vehicle communicates 

with the roadside infrastructure. Figure 5.1 shows the equipment used to implement the YODA 

system.  

 

 

Figure 5.1 Savari network (Savarinetworks 2012) devices, StreetWave on left and MobiWave on 

right 

 

StreetWave 
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 The setup consists of two devices, MobiWave and StreetWave. MobiWave is the in-

vehicle device; it is connected with a driver interface, and is equipped with a GPS device. 

StreetWave is installed at the intersection and is connected to the traffic light in order to obtain 

signal information from the light.  

 Using MobiWave, vehicle speed and location of the vehicle are sent to the StreetWave. 

Then StreetWave compares this information to the phase status obtained from the traffic light. 

For green and red signals, driver decisions are straightforward; for yellow signals, however, 

drivers can choose to either stop or go. StreetWave assists the driver of the vehicle by computing 

whether or not the vehicle can safely clear the intersection safely before the onset of the red 

signal. If it is safe for the driver to proceed, StreetWave sends the appropriate signal to 

MobiWave; StreetWave also sends a signal to MobiWave if continuing through the intersection 

is risky. The driver can see on his user interface screen whether it is safe to continue or if it is 

necessary to decelerate and stop.  

 The DSRC (Armstrong Consulting, Inc. 2012) technology utilized by YODA consists of 

one-way or two-way short- to medium-range wireless communication channels specifically 

designed for automotive use, as well as a corresponding set of protocols and standard two-way 

medium range communication channels. The DSRC transmitter and receiver pair are present in 

both MobiWave and StreetWave so that the systems can communicate with each other.  

5.2 Prototype Assembly 

 MobiWave and StreetWave were connected to a switch using Ethernet ports; then, the 

switch was connected to a computer equipped with the Ubuntu 12.04 Operating System. The set-

up is displayed in figure 5.2. 

 

http://en.wikipedia.org/wiki/Wireless
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Figure 5.2 Connection set-up for development purposes 

  

 The following steps were taken to successfully install our software packages to 

MobiWave and StreetWave. Please note that throughout this part of the documents all codes are 

presented in italics. 

Step 1 consisted of connecting the development machine to MobiWave/Street Wave. The 

terminal screen on Ubuntu was displayed by holding Ctrl + Tab and pressing T. Repeating his 

sequence three consecutive times resulted in opening three different terminals, one for the 

developing computer, one for MobiWave, and one for StreetWave.  

 In the terminal opened for MobiWave, entering the command: ssh root@192.168.0.253  

resulted in connecting to the device operating system. First, the password gems was entered; 

following password entry, the operating system was displayed on the terminal assigned to 

MobiWave, as shown in figure 5.3: 

mailto:root@192.168.0.253
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Figure 5.3 Openwrt operating system on MobiWave 

 

 The same course of action was taken for StreetWave: the command ssh 

root@192.168.0.252  was entered, followed by the password was gems. An identical screen as 

that of the MobiWave screen was displayed. 

 MobiWave and StreetWave operate on an openwrt operating system. A limitation of this 

operating system is that no code can be directly compiled; instead code is cross compiled. Cross 

compiling entails that software code is written and compiled on another computer connected to 

the openwrt systems, then linked to the openwrt operating system. The openwrt receives only 

executable binary codes. This shields the MobiWave or the StreetWave unit from the 

compilation load. 

 Step 2 consisted of loading the vendor-provided package onto MobiWave/StreetWave. 

Savari Networks provided all of the packages required for enabling cross compiling for the 

YODA algorithms, and any other desired package. Savari also provided critical device 

mailto:root@192.168.0.252
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specifications for hardware usage. Since the packages were in compressed format, after the 

packages were copied onto the development computer they needed to be extracted using the code 

listed below. The first step, using the terminal specified for the developing computer, was to use 

cd command to arrive at the directory upon which the packages were copied, and enter: 

 

               %tar -jxvf SOBOS-X-SDK-x86-for-Linux-i686(correct file name).tar.bz2  (5.1) 

 

Some sample codes were provided by the vendor. In order to enable cross compiling, it 

was necessary to link the file path where the package intended to be placed on 

MobiWave/StreetWave, then convert them to binary. First it was necessary to link the simple, 

vendor- provided helloworld package because it generated the correct folder structure, which 

would be of use in any other desired package. Again using cd command prompted the SOBOS-X-

SDK-x86-for-Linux-i686 folder, which is referred as SOBOS in the remainder of this report. The 

code required for linking a package was as follows: 

 

                                      % ln -s ../../sdk-sample-apps/helloworld  (5.2) 

   

where, 

ln is a Unix command for linking files or directories to each other.  

 

In the SOBOS folder, the command make V=99. Make V=99 was entered when 

compiling system output was desired in verbose mode. Verbose mode, by definition, is a mode in 

which varying levels of status messages are displayed during processing. This command resulted 
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in the creation of a new file in the folder packages—helloworld.ipk—which was ready to be 

transferred to the openwrt operating system. 

Step 3 involved copying the package on MobiWAVE. On the development computer 

terminal, using the command below or any other command that used CD , the folder packages 

located in the folder bin were accessed: 

 

              cd SOBOS-SDK-x86-for-Linux-i686(correct file name)/bin/packages/i386 (5.3) 

 

 There, the package was copied on MobiWave using the instruction below: 

 

                                    scp helloworld.ipk  root@192.168.0.253:/tmp  (5.4) 

 

scp or, secure copy, copies files between hosts on a network. It uses ssh protocol, implying that 

the data transferred is encrypted and authentication is needed to copy the data. On the terminal 

that was connected to MobiWave, researchers typed in: cd /tmp , which opened the tmp folder. 

Typing the instruction below installed the code on the MobiWave. 

 

                                                opkg1 install ./helloworld*.ipk  (5.5) 

 

 Opkg is a lightweight package management system based on Ipkg, used in older versions 

of openwrt. It can install, update, and remove individual software packages, resolve 

dependencies between packages, and so on. After this command, typing 

                                                 
1
 In the guide it was written ‘ipkg,’ which will result in an error. In the newer versions of openwrt (such as used 

here), the correct command is ‘opkg.’ 

mailto:root@192.168.0.253:/tmp
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/usr/local/bin/helloworld loaded the application, and resulted simply in MobiWave saying: Hello 

World! 

 The helloworld.ipk file on StreetWave can also be copied using the terminal specified to 

it to obtain similar results.  

 Step 4 entailed installing specific packages on the MobiWave/StreetWave. The file 

structure is described in next section in detail. It should be noted that our package contained a 

file named its_trafficlight.c. Once opened, the screen read: 

 #define CARz.  Notably, this differs from “CAR.” Anything other than CAR was compiled 

for StreetWave. If CARz was changed to CAR, it was compiled for MobiWave. 

 Steps taken here were almost completely identical to the vendor-provided package 

helloworld. The name of the package designed by the researchers was its_trafficlight. All the 

steps were taken exactly as mentioned above, but, instead of helloworld, the term its_trafficlight 

was used. However once the package its_trafficlight.ipk was generated for StreetWave and 

copied, the file its_trafficlight.c was opened and CARz was changed to CAR, at which point 

another its_trafficlight.ipk was generated and copied on MobiWave.  

Step 5 involved understand the displays on the terminals. As a result of connecting to the 

terminals of MobiWave and StreetWave, the results obtained while running the code can be seen 

below. Here 3 scenarios may occur: 

A) The MobiWave is not getting any data from StreetWave, and vice versa: 

In this case the devices do not communicate with each other. Figure 5.4 briefly 

describes how each operates in this case: 
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Figure 5.4a MobiWave not in the range of any StreetWave 

 

 

Figure 5.4b StreetWave with no MobiWave detectable 

 

B) Vehicle approaching yellow signal safely: 

In this case, the StreetWave has computed the risk depending on speed and distance 

from the traffic light as well as the remaining yellow signal duration, and has decided 

that it is safe for the driver to proceed. It communicates a signal to the MobiWave. 

Figure 5.5 shows how MobiWave translates the signal at the corresponding GPS 

location on the terminal, and the reaction of StreetWave to inputs from MobiWave 

and the traffic light. 
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Figure 5.5 A vehicle in the safe mode, on StreetWave terminal, and on MobiWave terminal 

 

C) Vehicle approaching yellow signal unsafely: 

In this scenario, the StreetWave decides again that it is not safe for the driver to 

proceed based on the speed, distance from the traffic light, and seconds remaining 

from the yellow signal; the system therefore sends a stop signal to the MobiWave. 

MobiWave shows this result on the terminal, as can be seen in figure 5.6. 

 

a) 
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Figure 5.6 Unsafe approach of a vehicle to yellow signal, shown for both MobiWave and 

StreetWave 

 

5.3 File System 

This current section provides an overview of each file. The position of  traffic signal 

station was given manually in a file named “position.txt,” and the duration of red, green, and 

yellow lights were entered in the file “duration.txt.” For testing purposes, the ip.txt contained IPs 

that were not generated for MobiWave and StreetWave; after initial testing, these IPs need to be 

changed to static IPs provided by the Savari Networks, as described earlier in this report. 
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5.3.1General.c and General.h.  

These header files include the information about the format that is being used by the GPS 

device in the MobiWave. They also define type of IPs and GPS structure. 

5.3.2 UDP.c and UDP.h 

 UDP stands for user data protocol. For any communication between two or more devices, 

there should be a protocol to enable the safe and secure transmission of data, and also ensure that 

the data is transferred in the same manner. All of these details fall under the category of user data 

protocol, whether the connection between two devices is wired (such as development computer 

to either MobiWave or StreetWave) or wireless (connection between MobiWave and 

StreetWave). According to the specifications provided along with MobiWave and StreetWave, 

these programs use static IPs, which enable developers to use proper socket programming. In any 

package intended to work with these devices, the MobiWave IP is: 192.168.0.253, and the 

StreetWave IP is: 192.168.0.252. In both cases, TCP port used was 8080 The username was root, 

and the password was gems.  

5.3.3 Car.c 

 The code to be housed in MobiWave is written in the file car.c. It translates the signal 

received from StreetWave. This program is also responsible for obtaining GPS position from the 

GPS device and putting it in the correct format to send over a wireless connection to StreetWave. 

It should also be noted that whenever Mobiwave is communicating within itself, it should use IP: 

127.0.0.1  and port 2947. This goes for any internal communication between MobiWave and the 

inbuilt GPS. 
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5.3.4 Station.c 

 The program station.c was designed for StreetWave. This program is responsible for 

obtaining the location from the MobiWave and finding the speed. It also receives the information 

regarding traffic signal status. Finally, it compares the speed and distance with the location of the 

station (traffic light), and processes whether a yellow signal is being shown and for how long. 

StreetWave decides if it is risky for the driver to proceed or not, and sends the appropriate signal 

back to the MobiWave. Figure 5.7 shows the inputs for StreetWave. 

 

 

Figure 5.7 StreetWave inputs 

 

5.3.5 Its_Trafficlight.c 

 This file contain logic for both MobiWave and StreetWave with different functions being 

executed depending on mode choice made by the user. If mode is chosen as CAR  the 

functionalities relevant to MobiWave are executed and if mode is defined as anything else the 

functionalities relevant to StreetWave are executed. This aids in the readability and simplicity of 

our code.  
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5.4 Wireless Communication 

 MobiWave is an on-board-unit capable of providing wireless and wired communication 

systems. As shown below, GPS is connected to MobiWave, and it sends the data to the 

StreetWave as soon as it is in the detectable range. StreetWave is installed on a pole at the 

intersection, where it receives traffic light information. As soon as a vehicle sends its GPS 

information, StreetWave computes risk and transmits the correct decision in order to assist the 

driver in the dilemma zone. This communication between the vehicle and StreetWave is 

classified as DSRC. The DSRC utilized by the GPS and StreetWave is programmed by socket 

programming, as both devices have static IPs. MobiWave is then connected to a screen using an 

Ethernet cable to show the driver the preferred decision on whether to accelerate or decelerate. 

The UML in figure 5.8 describes the order of events in the YODA system. 
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Figure 5.8 Order of events in decision assistance 

 

 

  



 

81 

Chapter 6 Summary and Conclusions 

This research examined the effect of information on drivers approaching high-speed 

intersections. Data was collected at five intersections providing drivers with information via 

AWF; an additional site lacking AWF was also evaluated. The probit model was used to model 

driver decisions at the onset of yellow. The results were intended to inform conclusions on the 

effects of AWF on the probability of stopping and illustrate their influence on perceived conflict 

curves. Sites providing information through AWF curves displayed a tendency toward earlier 

probability of stopping curves; in particular, Highway 2 and US-75 probability of stopping 

curves differed drastically from the other studied sites. The shift at US-75 resulted in virtually all 

drivers approaching the intersection with the potential for minor or severe conflict. The risk 

associated with being downstream of the severe deceleration distance and upstream of the 

maximum passing distance was calculated for a variety of speeds at each intersection. An overall 

weighted average was then computed and compared to the crash histories. An association could 

be seen in the comparison between the crash histories and the computed risks, as sites with large 

severe deceleration risk had higher rear-end crash averages, and vice-versa. Therefore, it was 

evident that providing drivers with information in advance of the intersection using AWF could 

potentially increase the risk of rear-end accidents and RLR, as opposed to decreasing the risk for 

drivers approaching these intersections. The information provided to the driver on stop and go 

should be consistent with the actual duration of yellow. If the yellow time is longer and the 

driver is incorrectly asked to stop, the result is confusion that results in riskier intersections. It 

should also be noted that, when no information was provided, the critical time threshold for 

stopping was very close to the actual yellow duration. This implies that drivers were inclined to 
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stop when the time to stop bar was greater than the yellow time, and were inclined to go when 

the time to stop bar was less than yellow time. 

The YODA system was developed, harnessing the insights gained regarding the impact 

of information on driver decision making. The system consists of two units, MobiWave and 

StreetWave. MobiWave is an on-board-unit capable of providing wireless and wired 

communication systems. MobiWave sends the vehicle location information to StreetWave when 

it is within a detectable range. Upon receiving this information, StreetWave computes the risks 

for the vehicle, and sends back information on whether the vehicle can make it across the stop 

bar within the remaining yellow time if the vehicle continues to travel at its current speed. 

MobiWave displays this decision to the driver using a human machine interface.  

6.1 Future Research 

The future YODA system could incorporate the impacts of weather, time of day, volume 

conditions, and the presence of other vehicles. Such site-specific information would make the 

information provided to the driver more precise and case sensitive.  
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