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1 INTRODUCTION 

1.1 Problem Statement 

Several years ago, researchers at the Midwest Roadside Safety Facility (MwRSF) of the 

University of Nebraska-Lincoln (UNL) were contracted by the Midwest States Pooled Fund 

Program to develop a new, non-proprietary, high-tension cable median barrier. The barrier 

system was to be developed to meet the Test Level 3 (TL-3) impact safety requirements 

published by the American Association of State Highway and Transportation Officials 

(AASHTO) and entitled the Manual for Assessing Safety Hardware (MASH) [1]. Initially, the 

new barrier system was being designed for use at any lateral position within a highway median 

with side slopes as steep as 4V:1H. 

Within the noted R&D program, five full-scale vehicle crash tests were performed on 

prototype high-tension cable barrier systems placed in 4V:1H V-ditches [2-3], and one full-scale 

vehicle crash test was conducted on a similar system installed on level terrain [4]. Of those six 

crash tests, three of the barriers succeeded in meeting the MASH TL-3 impact safety 

requirements, and three did not. The two most recent crash tests were test nos. 4CMB-5 and 

4CMBLT-1, both of which failed, thus prompting this redesign effort. 

In test no. 4CMB-5 [3], a 5,149-lb (2,336-kg) pickup truck (2270P vehicle) impacted the 

cable barrier system at a speed of 61.8 mph (99.5 km/h) and at a 26.5-degree angle. The barrier 

was located on the front slope of a 46-ft (14-m) wide, 4V:1H sloped V-ditch, 12 ft (3.6 m) 

laterally away from the front slope break point. The critical impact point was targeted to be 12-

in. (305-mm) upstream from a support post. As the impacted post rotated backward and 

downward, it pushed the cables on the non-impact side and pulled the cables on the impact side 

along with it. The top cable was on the non-impact side. As a result, the vehicle overrode the top 

cable and was not captured, ultimately resulting in a failure of the barrier system. 
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In test no. 4CMBLT-1 [4], a 3,470-lb (1,574-kg) passenger car (1500A vehicle) impacted 

the cable barrier system at a speed of 62.2 mph (100.1 km/h) and at a 25.3-degree angle. For this 

scenario, the barrier system was placed on level terrain. The critical impact point was determined 

to occur between two posts. As the vehicle was being redirected, the third cable from the ground 

heavily interacted with the vehicle and crushed the A-pillar, thus resulting in a failure of the 

barrier system due to excessive penetration into the vehicle’s occupant compartment. Of 

particular note, the third cable was still attached to the post immediately downstream from the 

vehicle when it began to crush the A-pillar. 

Both barrier system failures could be partially attributed to the manner in which the 

cables were attached to the posts. In the case of test no. 4CMB-5, the impacted post itself—not 

the attachment—laterally pushed the top cable as it rotated backward and downward. As the post 

continued to rotate, the top cable began to engage the cable-to-post attachment vertically, but 

was unable to be released away from the post. During this event, the upper cable was pulled 

downward an estimated 20 in. (508 mm). 

In the case of test no. 4CMBLT-1, the third cable that crushed the A-pillar was on the 

impact side of the posts. Just before the A-pillar was crushed, the third cable was still attached to 

the post immediately downstream from the vehicle, while laterally being pushed into the front of 

the post and slightly wedged upward on the cable-to-post attachment. From the high-speed 

video, the downstream post did not appear to bend backward much under this initial lateral load, 

and the cable-to-post attachment did not release the cable under this vertical load.  

In 2011 and following the failure of test nos. 4CMB-5 and 4CMBLT-1, it was determined 

that design modifications were necessary to improve barrier performance. In addition, members 

of the Midwest States Pooled Fund Program desired to redirect the development effort. 
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1.2 Research Objective 

The research objective of the portion of the project reported herein was to design new 

cable-to-post attachments to improve the safety performance of the non-proprietary, high-

tension, 4-cable median barrier system. The modified cable barrier system would be designed for 

use in median ditches with 6V:1H or flatter side slopes and using a 0 to 4 ft (0 to 1.2 m) lateral 

placement away from the edge of the shoulder or slope break point. However, the state DOTs 

may desire to select the system configuration so that the barrier would provide satisfactory safety 

performance when positioned anywhere in a 6V:1H or flatter median ditch. In addition, it was 

hopeful that the cable barrier system could later be modified for use in 4V:1H sloped medians, 

including at 0 to 4 ft (0 to 1.2 m) as well as anywhere in the ditch. Finally, the modified cable 

barrier system would be designed to meet the Test Level 3 impact safety standards provided in 

MASH. 

1.3 Research Approach 

The research objective was completed in four steps: (1) determine the minimum design 

loads associated with horizontal and vertical curves as a function of post spacing; (2) determine 

target capacities for the vertical and lateral cable release out of the cable-to-post attachments at 

all four cable heights; (3) design and test cable-to-post attachments for the bottom three cables; 

and (4) design and test cable-to-post attachments for the top cable. Steps 3 and 4 were ongoing, 

with cable-to-post attachments constantly being designed, tested, modified and re-tested until 

final recommendations were ready to be made. 

1.4 Order of Report 

Chapter 1 introduces the problems with the cable-to-post attachments in the most recent 

full-scale vehicle crash tests, states the objective of designing new cable-to-post attachments, and 

lays out the research approach. 
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Chapter 2 is intended to familiarize the reader with cable-to-post attachments used within 

other, federally-approved cable barrier systems. It also contains a brief discussion on the design 

and testing of passenger vehicles, including the roof and A-pillar. 

Chapter 3 is intended to familiarize the reader with each of the six full-scale vehicle crash 

tests which MwRSF has performed on prototype high-tension cable barrier systems, as well as 

three full-scale vehicle crash tests which were performed on prototype low-tension cable barrier 

systems. It also contains details about the R&D programs utilized to explore new cable-to-post 

attachments. 

Chapter 4 is a discussion of the design loads. It contains equations for the design loads 

associated with horizontal and vertical curves as a function of post spacing, as well as new 

targets for the lateral and vertical release loads of the cable-to-post attachments. 

Chapter 5 discusses the Round-1 modifications to the keyway bolts and their keyways. 

Keyway bolts were one of two major categories of cable-to-post attachments which were 

considered for the bottom three cables. Chapter 5 shows details and dimensions for concepts that 

made it to component-level testing and discusses the thought process behind each. 

Chapter 6 contains details about the conditions of the dynamic component tests on 

keyway bolts and tabbed brackets. 

Chapter 7 presents and discusses the results of Round 1 of dynamic component tests on 

the keyway bolts. 

Chapter 8 discusses the Round-2 modifications to the keyway bolts, which resulted in the 

extended keyway bolts. 

Chapter 9 presents and discusses the results of Round 2 of dynamic component tests on 

the extended keyway bolts. 
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Chapter 10 discusses the crimp-in-place tabbed bracket concepts. Tabbed brackets were 

the other major category of cable-to-post attachments, besides keyway bolts, which were 

considered for the bottom three cables. There were three rounds of design modifications, testing 

and evaluation on tabbed brackets. Chapter 10 shows details for crimp-in-place tabbed brackets 

of Round 1 and includes equations that were used to predict their lateral and vertical release 

loads. 

Chapter 11 presents and discusses the results of Round 1 of dynamic component tests on 

the crimp-in-place tabbed brackets. 

Chapter 12 shows details for the bolted tabbed brackets of Round 2 and includes 

equations that were used to predict their lateral and vertical release loads. 

Chapter 13 presents and discusses the results of Round 2 of dynamic component tests on 

the bolted tabbed brackets. 

Chapter 14 shows details for the bolted tabbed brackets of Round 3 and includes 

equations that were used to predict their lateral and vertical release loads. 

Chapter 15 presents and discusses the results of Round 3 of dynamic component tests on 

the bolted tabbed brackets. 

Chapter 16 summarizes the results of the dynamic component tests on the keyway bolts 

and tabbed brackets and explains how one concept was chosen as the cable-to-post attachment 

that would be used for the bottom three cables. 

Chapter 17 discusses the top cable-to-post attachment concepts that were tested in quasi-

static component tests. 

Chapter 18 contains details about the conditions of the quasi-static component tests on 

top cable-to-post attachment concepts. 
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Chapter 19 presents and discusses the results of quasi-static component tests on the top 

cable-to-post attachment concepts. One of the concepts was selected for further component 

testing. 

Chapter 20 contains details about the conditions of a bogie impact test that was used to 

evaluate the top cable-to-post attachment that was chosen. 

Chapter 21 presents and discusses the results of the bogie impact test and makes a 

recommendation concerning the top cable-to-post attachment. 

Chapter 22 summarizes the design effort, draws conclusions about the design of cable-to-

post attachments, and recommends the cable-to-post attachments to be used. 
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2 LITERATURE REVIEW 

2.1 Introduction 

Cross-median crashes result in a disproportionately high number of fatalities when 

compared with other run-off-road events [5]. Cable median barriers have been demonstrated to 

be effective in preventing cross-median crashes [6], but they also increase crash frequency [7]. 

When it comes to current cable median barriers and their associated hardware, room for 

continued improvement exists, especially cable-to-post attachments. As such, a literature review 

was performed to focus on the current methods for connecting wire rope cables to vertical 

support posts. 

2.2 Cable-to-Post Attachments 

Previously, MwRSF researchers performed a thorough literature review of cable barrier 

testing as well as summarized typical hardware and configurations, which was published in 2010 

[8]. MwRSF had also performed an extensive patent search in order to ensure that any new 

hardware did not violate others’ intellectual property [9]. Based on these prior investigations, 

some of the various cable-to-post attachments are highlighted below. It should be noted that 

cable-to-post attachments are responsible for connecting horizontal cables to posts and 

withstanding vehicle impact forces until cables are released away from posts, either vertically or 

horizontally. A well-designed cable-to-post attachment should develop the full moment capacity 

of the post about the strong axis of bending when pulled laterally, but release when pulled 

vertically so that the cable does not clamp down on an impacting vehicle’s A-pillar and crush it. 

The intended function of the cable-to-post attachments will be discussed in more detail in 

Chapters 3 and 4. 

Between 1960 and 1965, the New York State Department of Public Works (NYSDPW) 

crash tested several guardrail systems [10]. Some of them were cable barriers. The first cable 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

8 

barrier crash test had an undesirable result, leading to many conclusions about how cable barriers 

should be designed. Among those conclusions was the assertion that, in order to prevent posts 

from pulling the cables down during impact events, cables should not be securely fastened to the 

posts. Later, a new cable barrier design was selected for crash testing, which included three 

cables attached to S3x5.7 (S76x8.5) steel posts with ¼-in. (6-mm) J bolts. The relatively weak J 

bolts opened up as the post deflected, allowing the cable to nearly stay at its original elevation, 

preventing the car from climbing up the cable. This case demonstrates how an undesirable 

behavior was observed in a crash test, traced back to the cable-to-post attachments, and 

subsequently changed. 

Cable J bolts are still commonly used today. The American Association of State Highway 

and Transportation Officials, (AASHTO) Task Force 13 published A Guide to Standardized 

Highway Barrier Hardware [11]. Among other systems and components, the hardware guide 

contains drawings and specifications for a nonproprietary, low-tension, 3-cable guardrail that 

was successfully crash tested according to the National Cooperative Highway Research Program 

(NCHRP) Report No. 350, Test Level 3 (TL-3) requirements [12]. Additional information 

regarding its recommended use can be found in Federal Highway Administration (FHWA) 

eligibility letter nos. B-64 [13] and B-64sup [14]. The system, shown in Figure 1, uses 5/16-in. 

(8-mm) J bolts to attach the cables to S3x5.7 (S76x8.5) steel posts. Several J bolt variations may 

be used and are shown in Figures 2 and 3. 
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Figure 1. Weak-Steel Post Cable Guardrail [11] 

 
Figure 2. Cable Hook Bolt [11] 
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Figure 3. Shouldered Cable Hook Bolt [11] 

There are also several proprietary cable barriers which use different methods for 

attaching the cables to the posts. Under an FHWA contract, KLS Engineering recently developed 

resource charts which provide general information about several commonly-used roadside safety 

systems [15]. A cable barrier resource chart from that document is shown in Appendix A. 

Researchers and designers are encouraged to visit the manufacturers’ web sites to obtain more 

information on each cable barrier system. The cable-to-post attachment methods for each of the 

barrier systems denoted on that chart are presented herein. The systems represent the most 

common high-tension cable barriers currently being used in the United States. 

The Brifen Wire Rope Safety Fence (WRSF) is a high-tension, cable barrier system [16]. 

It has different configurations (both 3- and 4-strand) which have been successfully crash tested 

according to the NCHRP Report No. 350 TL-3 and TL-4 requirements. More detailed 

information is provided in FHWA eligibility letter nos. B-82 [17], B-82B [18], B-82C [19], B-

82C1 [20], and B-82B1 [21]. For the common Brifen system, the top cable is placed in a slot 

located in the center of a Z-shaped post and covered with a post cap. The other cables sit on 
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exterior locating pegs and are weaved around the line posts. Typical Brifen systems are shown in 

Figures 4 and 5 with the express written consent of Brifen USA, Inc. 

 
Figure 4. Typical Brifen WRSF 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

12 

 
Figure 5. Brifen WRSF TL-4 Line Post Assembly [22] 

The Gibraltar Cable Barrier System is another high-tension, cable barrier system [23]. It 

also has different configurations (both 3- and 4-strand) which have been successfully crash tested 

according to the NCHRP Report No. 350 TL-3 and TL-4 requirements. More detailed 

information is provided in FHWA eligibility letter nos. B-137 [24], B-137A [25], B-137B [26], 

B-147A [27], B-137C (HSA) [28], B-137A1 [29], B-137C (HSSD) [30], and B-137D [31]. For 

the common Gibraltar system, the cables are attached to C-section posts with a single steel hair 

pin. The TL-4, 3-cable version is shown in Figures 6 and 7. 
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Figure 6. Gibraltar TL-4 (3 Cable) Line Post Details [32] 

 
Figure 7. Installation of Gibraltar’s Hairpin and Lockplate [32] 
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Nucor Steel Marion manufactures the Nu-Cable high-tension, cable barrier system [33]. 

The Nu-Cable barrier has different configurations (both 3- and 4-strand) which have been 

successfully crash tested according to the NCHRP Report No. 350 TL-3 and TL-4 requirements. 

More detailed information is provided in FHWA eligibility letter nos. B-96 [34], B-96A [35], B-

167 [36], B-183 [37], B-184 [38], B-193 (REVISED) [39], and B-184A [40]. For a common 

Nucor Steel Marion system, the top two cables are held in place by a cable hanger and hanger 

strap. The other cables are held in place by locking hook bolts, which differ according to the side 

of the post to which the cable is being attached. There are two different configurations—roadside 

and median. For the median configuration, the bottom cables are placed on alternating sides and 

use two different locking hook bolts. The roadside configuration has both bottom cables on the 

same side and use the same type of locking hook bolt. The cable-to-post attachments for the TL-

4 system are shown in Figure 8. The line post detail for the median configuration is shown in 

Figure 9. 

 
Figure 8. Nu-Cable TL-4 Cable-to-Post Attachments [33] 
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Figure 9. Nu-Cable TL-4 Line Post Detail, Median Configuration [33] 

Gregory Industries, Inc. promotes the Blue Systems, Inc. Safence cable barrier system in 

the U.S. The Safence system has different configurations (both 3- and 4-strand) which have been 

successfully crash tested according to the NCHRP Report No. 350 TL-3 and TL-4 requirements 

[41]. More detailed information is provided in FHWA eligibility letter nos. B-88 [42], B-88A 

[43], B-88B [44], B-88C [45], B-88D [46], B-88E [47], and B-88F [48]. For common systems, 

all of the cables are inserted in the web of the post and separated by plastic spacers. Two 

different posts can be used—an I-shaped post or a Safence C-post. Attachment details for the 

common 3- and 4-strand configurations for both posts are shown in Figure 10. MwRSF 

performed a full-scale vehicle crash test on a Safence cable barrier system placed on a 4V:1H 

side slope in which the bottom cable was fastened to the side of the post with a 3/16-in. (4.8-mm) 

diameter side hook [49]. A line post and side hook detail for that system is shown in Figure 11. 
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Figure 10. Safence Cable-to-Post Attachment Details [41] 

  
    Line Post Detail       Side Hook Detail 

 

Figure 11. Safence with Side Hooks [49] 

Trinity Highway Products manufactures the Cable Safety System (CASS). CASS is a 

high-tension, cable barrier system which has different configurations (both 3- and 4-strand) and 
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has been successfully crash tested according to the NCHRP Report No. 350 TL-3 and TL-4 

requirements [50]. More detailed information is provided in FHWA eligibility letter nos. B-119 

[51], B-119A [52], B-119B [53], B-141 [54], B-141A [55], B-141B [56], B-157 [57], B-141C 

[58], B-141E [59], B-141D [60], and B-232 [61]. The line posts have a wave-shaped slot in the 

center of the post. For the typical CASS system, all of the cables are placed in the slot and 

separated by plastic spacers. For the TL-3 CASS system for placement on 4V:1H side slopes, the 

bottom cable is attached to the side of the post with a cable lock bolt. The support posts that are 

located closer to the end terminal are different. These posts use hook bolts to attach the cables to 

the flanges. A typical CASS system is shown in Figure 12. The wave shape of the upper slot is 

shown in Figure 13, while the CASS hook bolts, used on the posts closer to the terminals, are 

depicted in Figure 14. 

 
Figure 12. Trinity Highway Products’ CASS [62] 
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Figure 13. CASS Wave-Shaped Slot [50] 

 
Figure 14. CASS Hook Bolts [50] 

Armorflex of New Zealand manufactures the Armorwire Cable Barrier system [63], a 

high-tension cable barrier with different configurations (both 3- and 4-strand). The Armorwire 

Cable Barrier system has been successfully crash tested according to the NCHRP Report No. 350 

TL-3 and TL-4 requirements. More detailed information is provided in FHWA eligibility letter 

no. B-222 [64]. The line posts are hollow, ovular steel tubes. For a typical system, the cables are 

placed in top and slide slots, and a plastic post cap is inserted in the top end. A drawing of a line 

post assembly is shown in Figure 15. Photographs of a line post before and after inserting the 

post cap are shown in Figure 16. 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

19 

 
Figure 15. Armorwire Cable Barrier Line Post Assembly [63] 

  
Before Post Cap Installation   After Post Cap Installation 

 

Figure 16. Armorwire Cable Barrier Line Post Photographs [63] 
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Eligibility letters for previously noted cable barrier systems can be found on the FHWA 

web site at http://safety.fhwa.dot.gov/roadway_dept/policy_guide/road_hardware/barriers/, 

keyword: “Cable Barrier” [65]. A summary of the cable barrier systems and eligibility letters is 

provided in Table 1. 

http://safety.fhwa.dot.gov/roadway_dept/policy_guide/road_hardware/barriers/
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Table 1. FHWA Eligibility Letters for Selected Cable Barriers [65] 

Letter No. Date 
Submitted 

By: 

Test 

Level 
Device Description 

B-64 2/14/2000 N/A 3 SGR01c Generic 3-strand cable barrier 

B-64sup 9/12/2005 N/A 3 SGR01a-b Generic 3-strand cable barrier 

B-161 7/3/2007 NYSDOT 3 Generic 4-strand cable barrier 

B-227 1/6/2012 WSDOT 3 Generic high-tension 3-strand cable barrier 

B-82 4/10/2001 Brifen Ltd. 3 4-strand Brifen WRSF 

B-82B 3/27/2005 
Hill & 

Smith Ltd. 
4 4-strand Brifen WRSF 

B-82C 5/26/2005 
Hill & 

Smith Ltd. 
3 3-strand Brifen WRSF 

B-82C1 4/13/2006 
Hill & 

Smith Ltd. 
3 

3-strand Brifen WRSF with reduced post 

spacing 

B-82B1 5/9/2006 Brifen Ltd. 3 4-strand Brifen WRSF on 4V:1H slope 

B-137 6/13/2005 Gibraltar 3 3-strand Gibraltar Cable Barrier 

B-137A 7/13/2005 Gibraltar 4 3-strand Gibraltar Cable Barrier 

B-137B 4/3/2006 Gibraltar 4 
3-strand Gibraltar Cable Barrier with 

alternative post spacing 

B-147A 6/16/2006 Gibraltar 3 Gibraltar cable to W-beam transition 

B-137C 

(HSA) 
7/12/2006 Gibraltar 3 

3-strand Gibraltar Cable Barrier on 4V:1H 

slope 

B-137A1 10/27/2006 Gibraltar 4 4-strand Gibraltar Cable Barrier 

B-137C 

(HSSD) 
1/8/2008 Gibraltar 4 

Revised anchor design for 4-strand 

Gibraltar Cable Barrier 

B-137D 2/8/2008 Gibraltar 4 
Four point anchorage to 4-strand Gibraltar 

Cable Barrier 

B-96 8/30/2002 
Nucor Steel 

Marion Inc. 
3 

3-strand guardrail with Marion Steel U-

Channel posts 

B-96A 10/12/2005 
Nucor Steel 

Marion Inc. 
3 

Variations on 3-strand guardrail with 

Marion Steel U-channel posts 

B-167 2/24/2008 
Nucor Steel 

Marion Inc. 
4 4-strand Nucor Wire Rope Barrier System 

B-183 11/26/2008 
Nucor Steel 

Marion Inc. 
3 & 4 

Nu-Cable systems using plastic or steel 

sockets 

B-184 12/9/2008 
Nucor Steel 

Marion Inc. 
4 Revised hanging clip for Nucor Steel posts 

B-193 

(REVISED) 
7/27/2009 

Nucor Steel 

Marion Inc. 
3 4-strand Nu-Cable system on 4V:1H slope 

B-184A 8/3/2009 
Nucor Steel 

Marion Inc. 
4 Nu-Cable with 20-ft spacing 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

22 

Table 1. FHWA Eligibility Letters for Selected Cable Barriers [65] (Continued) 

 

Letter No. Date Submitted By: 
Test 

Level 
Device Description 

B-88 7/13/2001 
Blue Systems 

AB 
3 4-strand Safence 

B-88A 1/28/2004 Safence, Inc. 3 
4-strand Safence for roadside 

applications 

B-88B 6/8/2004 
Blue Systems 

AB 
3 

4-strand Safence with posts set in 

concrete footings 

B-88C 5/26/2005 Safence, Inc. 3 
4-strand Safence with alternative posts 

(C-channel) 

B-88D 12/27/2006 Safence, Inc. 4 3-strand Safence 

B-88E 7/31/2007 Safence, Inc. 4 
4-strand Safence with different cable 

heights 

B-88F 12/23/2008 Safence, Inc. 3 3-strand Safence on 4V:1H slope 

B-119 5/13/2003 
Trinity Highway 

Products 
3 3-strand CASS 

B-119A 5/15/2003 
Trinity Highway 

Products 
3 3-strand CASS with 5 m post spacing 

B-119B 8/28/2003 
Trinity Highway 

Products 
3 

3-strand CASS with 2 m post spacing 

with concrete footings 

B-141 11/17/2005 
Trinity Highway 

Products 
3 & 4 

3-strand CASS TL-3 and CASS TL-4 

with S4x7.7 driven posts 

B-141A 5/2/2006 
Trinity Highway 

Products 
3 

3-strand CASS TL-3 with driven posts 

at 20-ft post spacing 

B-141B 5/8/2006 
Trinity Highway 

Products 
3 

3-strand CASS TL-3 with 32.5-ft post 

spacing 

B-157 4/23/2007 
Trinity Highway 

Products 
4 

4-strand CASS system with S4x7.7 

posts & terminal 

B-141C 11/14/2008 
Trinity Highway 

Products 
3 3-strand CASS on 4V:1H slope 

B-141E 2/20/2009 
Trinity Highway 

Products 
3 4-strand CASS with C-Channel posts 

B-141D 3/19/2009 
Trinity Highway 

Products 
4 

3-strand CASS on 6V:1H or flatter 

slopes 

B-232 5/4/2012 
Trinity Highway 

Products 
3 CASS S3 on 4V:1H slope 

B-222 1/27/2012 Armorflex 3 & 4 3- and 4-strand Armorwire Barrier 

 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

23 

2.3 A-Pillar Testing and Design 

Thus far, details for common cable-to-post attachments used in federally-approved cable 

barriers were investigated and have been presented as it is important to be aware of the state-of-

the-practice. However, it was deemed valuable to briefly explore the testing and design of motor 

vehicle roof structures; since, cable interaction with A-pillars was observed in several MwRSF 

full-scale vehicle crash tests noted previously and also discussed in Chapter 3. For this reason, 

the testing and design of vehicle roof structures (e.g., A-pillar) were also investigated. 

A-pillars are the front-most structural members which support the roof of a vehicle, as 

shown in Figure 17. B- and C-pillars are also used to support the roof structure. The roof and its 

supporting pillars are configured to mitigate concerns for excessive crush of the occupant 

compartment during vehicle rollovers. As such, vehicles must comply with roof crush testing 

standards. 

 
Figure 17. Typical A-Pillar 
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There are currently two standard roof crush tests: Federal Motor Vehicle Safety Standard 

(FMVSS) 216a [66] and the Insurance Institute for Highway Safety’s (IIHS) Roof Strength Test 

[67]. Both are quasi-static tests in which a rigid plate is pushed into the corner of the roof, and 

the force is measured through 5 in. (127 mm) of deflection. According to FMVSS 216a, which 

took effect on September 1, 2012, the crush resistance must exceed three times the vehicle 

weight. The old standard, FMVSS 216, set in 1973, only required one and a half times the 

vehicle weight [68]. By September 1, 2017, all vehicles must satisfy the new FMVSS 216a 

standard, which may result in stronger, more robust A-pillars. It should be noted that many of the 

vehicles currently on the road already comply with the updated standard. 

In general, A-pillars have been getting stronger, sturdier, and ultimately thicker. One 

unfortunate consequence of this is reduced visibility for the driver, putting pedestrians and 

bicyclists at risk, especially when the driver is making a left turn [69]. Clearly, there are 

competing goals. Increased driver visibility demands that the A-pillar be smaller, while increased 

safety in the event of a rollover crash demands that the A-pillar be stronger. One solution could 

be to use stronger materials. 

From the available literature, no evidence was found which denoted that motor vehicle 

manufacturers were particularly concerned with A-pillar crushing or cutting as a result of 

vehicular collisions with cable barriers, which is not surprising. However, one may assume that 

stiffening and strengthening the A-pillars to meet more stringent rollover requirements could 

partially and indirectly address concerns for A-pillar crushing or cutting. 
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3 PROJECT BACKGROUND 

3.1 Introduction 

Over the years, cable-to-post attachments have played a central role in the effort to 

develop an improved, non-proprietary, cable median barrier. MwRSF has conducted nine full-

scale crash tests on low- and high-tension cable barrier systems as well as hundreds of static and 

dynamic component tests. 

3.2 Improved Low-Tension Cable Median Barrier 

Before MwRSF began developing a high-tension cable median barrier, the Midwest 

States Pooled Fund Program funded an effort to develop an improved, low-tension, cable median 

barrier [70]. Three low-tension, cable barrier prototypes were designed and full-scale crash 

tested. Each of the three differed from the generic, low-tension, 3-cable guardrail in three main 

ways. First, a fourth cable was incorporated into the barrier system in order to reduce the 

potential for under-ride. Second, the cable spacing was expanded in order cover more area. 

Third, the post spacing was shortened in order to reduce barrier deflections. Each design was 

tested once. 

The first design, tested in full-scale crash test no. CMB-1, used M8x6.5 (M203x9.7) line 

posts, spaced at 6 ft (1.8 m) centers. The system was 486 ft (148 m) in length, consisted of 80 

posts, and was placed on level terrain. Standard cable hook bolts, as shown in Figure 3 in the 

previous chapter, attached the cables to the posts. From post to post, the cables alternated from 

the front flange to the back flange, creating a woven pattern. A pre-test photograph from test no. 

CMB-1 is shown in Figure 18. 
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Figure 18. Cable Barrier System, Test No. CMB-1 

For test no. CMB-1, a 1,969-lb (893-kg) small car (820C vehicle) impacted the barrier at 

a speed of 60.6 mph (97.6 km/h) and at a 19.7-degree angle. The impact point was 33 in. (846 

mm) upstream from post no. 41. The vehicle was contained, but it rolled over as it was 

redirecting. The cable barrier was determined to be unacceptable according to the TL-3 safety 

performance criteria for test designation no. 3-10 found in NCHRP Report No. 350. More 

information about the prototype barrier system and the test, including the test summary sheet, is 

provided in Appendix B, Figure B-1. 

The second design used S3x5.7 (S76x8.5) line posts spaced at 8 ft (2.4 m) centers. The 

system was 484 ft (148 m) in length, consisted of 61 posts, and was placed on level terrain. Rigid 
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cable brackets, made from ½-in. (13-mm) thick A36 steel plate, were welded to the posts, and 

the cables were set in them. The cables were not weaved, although the cables alternated from 

front side to backside of post as a function of height. A detail of the rigid cable bracket is shown 

in Figure 19. A pre-test photograph of a line post is shown in Figure 20. 

 
Figure 19. Rigid Cable Bracket Detail, Test No. CMB-2 

 
Figure 20. Cable Barrier System, Test No. CMB-2 
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For test no. CMB-2, a 1,960-lb (889-kg) small car (820C vehicle) impacted the system at 

a speed of 62.8 mph (101.1 km/h) and at a 19.7-degree angle. The impact point was 48 in. (1,219 

mm) upstream from post 31. The vehicle was adequately contained. The left-front tire became 

snagged on a post as the vehicle was being redirected. As a result of the snag, the vehicle yawed 

counterclockwise away from the barrier before coming to rest. In spite of this motion, the vehicle 

intrusion into adjacent traffic lanes was minimal. The cable barrier was determined to be 

acceptable according to the TL-3 safety performance criteria for test designation no. 3-10 found 

in NCHRP Report No. 350. More information about the prototype barrier system and the test, 

including the test summary sheet, is provided in Appendix B, Figure B-2. 

For this test, the cable behavior upon release from the posts was particularly interesting. 

Since the brackets were open at the top, the upper two cables were prematurely released away 

from a significant number of posts beyond the impact region. This behavior was due to a stress 

wave which propagated through the cables. There was a concern that such premature cable 

release would result in reduced energy dissipation, which could contribute to reduced vehicle 

containment. On a positive note, the easy vertical release prevented the cables from clamping 

down on the A-pillar and crushing it—a problem encountered in future barrier designs. 

Similar to the design used in test no. CMB-2, the third configuration used S3x5.7 

(S76x8.5) line posts spaced at 8 ft (2.4 m) centers. The system was 484 ft (148 m) in length, 

consisted of 61 posts, and was placed on level terrain. The shape of the rigid cable brackets was 

changed slightly. Retainer bolts were also added above the cable brackets to prevent premature 

cable release. A detail of the rigid cable bracket is shown in Figure 21. A pre-test photograph of 

a line post is shown in Figure 22. 
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Figure 21. Rigid Cable Bracket Detail, Test No. CMB-3 

 
Figure 22. Cable Barrier System, Test No. CMB-3 

For test no. CMB-3, a 4,459-lb (2,023-kg) pickup truck (2000P vehicle) impacted the 

system at a speed of 60.8 mph (97.8 km/h) and at a 25.4-degree angle. The impact point was 48 
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in. (1,219 mm) upstream from post no. 31. The vehicle was adequately contained and safely 

redirected. Because of the retainer bolts, the top two cables were retained on the posts that were 

outside of the impact region. The cable barrier was determined to be acceptable according to the 

TL-3 safety performance criteria for test designation no. 3-11 found in NCHRP Report No. 350. 

More information about the prototype barrier system and the test, including the test summary 

sheet, is provided in Appendix B, Figure B-3. 

Despite the successful crash tests on the improved low-tension, cable barrier systems 

installed on level terrain, the member states of the Midwest States Pooled Fund Program 

ultimately decided to redirect the cable barrier R&D program. In addition, the cable-to-post 

attachments, consisting of brackets welded to the posts, were not desirable. 

3.3 High-Tension, Cable Median Barrier 

The objective of the new effort was to design an improved, non-proprietary, high-tension, 

cable median barrier that for use on generally flat terrain as well as anywhere within a depressed 

median with side slopes as steep as 4V:1H. The 4-cable barrier system was to be crash tested and 

evaluated according to the TL-3 safety performance criteria found in the Manual for Assessing 

Safety Hardware (MASH) [1]. 

3.3.1 Curved Keyway Bracket Development 

Before a new high-tension, cable barrier system could be crash tested, an effort was 

undertaken to design a completely new cable-to-post attachment. This R&D effort was 

summarized in an MwRSF research report [9]. Ninety-nine static component tests and fourteen 

dynamic component tests were performed. In these tests, the attachments were subjected to 

vertical or lateral loads until failure. The static component tests, which included both slotted 

bracket and U-bolt concepts, were very similar to those later described in Chapter 18. Designers 

set target lateral and vertical release loads of 6.00 kips (26.7 kN) and 1.00 kips (4.45 kN), 
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respectively. Ultimately, one of the slotted bracket concepts—the curved keyway bracket—was 

chosen for further testing, but the U-bolt concepts which featured keyways and slotted upper 

holes in the post, as shown in Figure 23, also performed very well and were the inspiration 

behind the keyway bolts in a later R&D effort [71]. 

  
 U-Bolt with Keyway Slot   U-Bolt with Upper Slot 

 

Figure 23. U-Bolt Concepts 

The dynamic component tests were very similar to those later described in Chapter 6, but 

with slight adjustments to the test jig in order to accommodate the different cable-to-post 

attachments. The cable-to-post attachment that was chosen—the curved keyway bracket—was 

fabricated from 1/8-in. (3-mm) thick A36 sheet steel. Each bracket was attached to the flange of 

the post with two SAE grade 5, 5/16-in. (8-mm) shoulder hex bolts with nuts and washers. 

Curved keyway bracket details are shown with the shoulder bolts in Figure 24, and without the 

shoulder bolts in Figure 25. A photograph of a curved keyway brackets installed on a post is 

shown in Figure 26. 
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Figure 24. Curved Keyway Bracket with Shoulder Bolts 

 
Figure 25. Curved Keyway Bracket Details 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

33 

 

 
Figure 26. Curved Keyway Brackets Installed on Post 

Since the cable-to-post attachments would be loaded dynamically during an impact event, 

dynamic component tests were an especially important part of the evaluation process. The curved 

keyway brackets had lateral and vertical release loads of 5.72 kips (25.4 kN) and 1.17 kips (5.20 

kN), respectively. It was believed that this would provide sufficient lateral strength to develop 

the full moment capacity of the post, and a sufficiently low vertical strength to prevent cables 

from being pulled down too far by rotating posts or clamping down and crushing a vehicle’s A-

pillar. 
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3.3.2 Phase I Full-Scale Crash Tests 

Phase I consisted of three full-scale vehicle crash tests [2]. The cable barrier system used 

S3x5.7 (S76x8.5) line posts spaced at 16 ft (4.9 m). The system was 608 ft (148 m) in length, 

consisted of 40 posts, and was placed in a 46-ft (14-m) wide, 4V:1H V-ditch. The cables were 

pre-tensioned to a target load of 4,213 lb (18.7 kN). The location of the barrier in the V-ditch 

was different for each of the three tests. Curved keyway brackets attached the cables to the posts. 

For test no. 4CMB-1, a 4,988-lb (2,263-kg) pickup truck (2270P vehicle) impacted the 

high-tension, 4-cable median barrier at a speed of 61.8 mph (99.4 km/h) and at a 27.9-degree 

angle. The barrier system was located on the front slope of the V-ditch, 12 ft (3.6 m) laterally 

away from the front slope break point. The point of impact was 36 in. (914 mm) downstream 

from post no. 15. The vehicle was adequately contained and redirected. It remained upright, and 

there were no significant penetrations into the occupant compartment. The test was determined to 

be acceptable according to the TL-3 safety performance criteria for test designation no. 3-11 

found in MASH. More information about the prototype barrier system and the test, including the 

test summary sheet, is provided in Appendix B, Figure B-4. 

For test no. 4CMB-2, a 2,557-lb (1,160-kg) small car (1100C vehicle) impacted the high-

tension, 4-cable median barrier at a speed of 62.7 mph (100.9 km/h) and at a 26.8-degree angle. 

The barrier system was located on the back slope of the V-ditch, 4 ft (1.2 m) laterally away from 

the bottom of the ditch. The point of impact was 64 in. (1,626 mm) downstream from post no. 

17. In order to increase the likelihood of under-ride, a soft soil condition was used for the ditch 

bottom. Prior to contact with the barrier, the vehicle made contact with the back slope. The 

vehicle undercarriage and wheels penetrated into and gouged the soft soil, resulting in loss of 

vehicle speed prior to impact with the barrier. As a result of these occurrences, the vehicle’s front 

end penetrated slightly under the bottom cable. However, the barrier system still contained the 
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vehicle, which remained upright. No significant penetrations into the occupant compartment 

occurred. In addition, the longitudinal OIV exceeded the MASH limit of 40 ft/s (12.2 m/s) when 

considering the loss in vehicle speed during tire rutting and soil plowing prior to vehicle contact 

with the barrier. Therefore, the test was determined to be marginally acceptable according to the 

TL-3 performance criteria for test designation no. 3-10 found in MASH when the barrier was 

placed near the ditch bottom configured with a soft soil condition. More information about the 

prototype barrier system and the test, including the test summary sheet, is provided in Appendix 

B, Figure B-5. 

For test no. 4CMB-3, a 2,586-lb (1,173-kg) small car (1100C vehicle) impacted the high-

tension, 4-cable median barrier at a speed of 62.0 mph (99.8 km/h), at a 27.2-degree angle. The 

barrier system was located on the back slope of the V-ditch, 4 ft (1.2 m) laterally away from the 

bottom of the ditch. The point of impact was 64 in. (1,626 mm) downstream from post no. 16. In 

contrast to the soft soil condition of test no. 4CMB-2, the soil at the bottom of the ditch was 

heavily compacted for this test. Similar to the previous test, the vehicle made contact with the 

back slope before making contact with the barrier. Upon impact with the barrier, the vehicle was 

adequately contained and remained upright, but the A-pillar was crushed by a cable, resulting in 

significant damage to the roof, windshield, and penetration into the occupant compartment. The 

cable crushed the A-pillar, because it was snagged on one of the shoulder bolts that corresponded 

to the curved keyway brackets, as shown in Figure 27. Therefore, due to the excessive occupant 

compartment penetrations, the test did not meet the TL-3 safety performance criteria for test 

designation no. 3-10 found in MASH when the barrier was placed near the ditch bottom with a 

strong/stiff soil condition. More information about the prototype barrier system and the test, 

including the test summary sheet, is provided in Appendix B, Figure B-6. 
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Figure 27. Cable Snag Resulting in Crushed A-Pillar, Test No. 4CMB-3 
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3.3.3 Keyway Bolt Development 

After full-scale crash test no. 4CMB-3, it was clear that the curved keyway brackets 

required redesign or replacement in order to improve barrier performance. As a result, MwRSF 

began an effort to redesign the cable-to-post attachments. For this effort, three main objectives 

were followed: (1) the cable-to-post attachments should meet or maintain the vertical and lateral 

release behavior provided by the curved keyway brackets; (2) the hardware should prevent cable 

snagging; and (3) the cable-to-post attachments should be simplified by minimizing the number 

of connecting parts. This R&D effort was summarized in an MwRSF research report [71]. 

MwRSF performed thirty-seven dynamic component tests (test nos. HTCUB-1 through 

HTCUB-37), and six steel-framed bogie vehicle impact tests (test nos. HTCC-1 through HTCC-

6). Dynamic component tests were used to obtain the lateral and vertical release loads of a 

particular cable-to-post attachment, and steel-framed bogie vehicle impact tests were used to 

obtain information about how far a post with that attachment might rotate before releasing the 

cable, during a simulated impact event. 

The cable-to-post attachments that were tested in this effort were known as keyway bolts. 

Keyway bolts were deliberately curved to avoid jagged protrusions, thus avoiding the problem 

which caused the barrier system to fail in test no. 4CMB-3. The first keyway bolts were 

fabricated from AISI C1018 steel round bar and had lateral and vertical release loads of 6.47 kips 

(28.8 kN) and 0.81 kips (3.60 kN), respectively. Stronger keyway bolts, fabricated from ASTM 

A449 steel round bar, were also tested. The stronger keyway bolts were found to have lateral and 

vertical release loads of 8.00 kips (35.6 kN) and 1.18 kips (5.25 kN), respectively. Keyway bolt 

details are shown in Figure 28. Details for the corresponding keyway are shown in Figure 29. 

The keyway bolts installed in and actual post are shown in Figure 30. 
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Figure 28. Keyway Bolt Details 

 
Figure 29. Keyway Details 
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Figure 30. Keyway Bolts Installed on Post 

Besides lateral and vertical release loads, energy absorption was another important 

criterion used for evaluating cable-to-post attachments. When a cable barrier system is laterally 

loaded, it deflects backward and causes the posts to yield and rotate. For a given steel section, 

more post rotation results in more energy absorption. 

In test nos. HTCC-1 through HTCC-6, a steel-framed bogie vehicle impacted a 

simplified, single-cable system in a perpendicular orientation and at a target speed of 17.0 mph 

(27.4 km/h). The basic test setup consisted of four S3x5.7 (S76x8.5) posts, spaced at 16 ft (1.9 

m) centers, with a tensioned cable mounted along all four posts. For a given test, only one type 

of cable-to-post attachment was being evaluated. The cable, which was pre-tensioned to 4,000 lb 

(17.8 kN), was mounted at a height of 34-½ in. (876 mm) above the ground. The bogie impacted 

the cable at the midpoint of a 16-ft (4.9-m) span between two of the posts. The cable-to-post 

attachments on the two posts adjacent to the span were on alternating sides. In this configuration, 

the bogie pushed the cable away from one post while pushing the cable into the other post. Upon 
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impact, the posts would begin to rotate until the cable-to-post attachments released the cable. The 

resulting post rotation angles were measured. The purpose of these tests was to compare the post 

rotations that could be achieved for cable barrier systems with different cable-to-post 

attachments. 

The post rotations achieved by the C1018 keyway bolts, A449 keyway bolts, and curved 

keyway brackets were 18 degrees, 34 degrees, and 33 degrees, respectively. As a result, the 

A449 keyway bolts were chosen over the C1018 keyway bolts. High-speed video images from 

test no. HTCC-4, in which the A449 keyway bolts were evaluated, are shown in Figure 31. 

Additional information and test results are provided in an MwRSF research report [71]. 

3.3.4 Phase II Full-Scale Crash Tests 

Phase II consisted of three full-scale vehicle crash tests. The cable barrier system used 

S3x5.7 (S76x8.5) line posts spaced at 16 ft (4.9 m) centers. The system was 608 ft (148 m) in 

length and consisted of 40 posts. For the first two tests (test nos. 4CMB-4 and 4CMB-5), the 

barrier systems were placed in a 46-ft (14-m) wide, 4V:1H V-ditch [3]. The location of the 

barrier in the V-ditch was different for both tests. For the third test (test no. 4CMBLT-1), the 

barrier system was placed on level terrain [4]. For all three tests, the cables were attached to the 

posts with A449 keyway bolts. 
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Bogie Impacts Cable 

 

 
Cable Releases from Post 

 

Figure 31. Post Rotation Test with A449 Keyway Bolts, Test No. HTCC-4 
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For test no. 4CMB-4, a 2,574-lb (1,168-kg) small car (1100C vehicle) impacted the high-

tension, 4-cable median barrier at a speed of 61.1 mph (98.4 km/h) and at a 25.8-degree angle. 

The barrier system was located on the back slope of the V-ditch, 4 ft (1.2 m) laterally away from 

the bottom of the ditch. The point of impact was 64 in. (1,626 mm) downstream from post no. 

16. Similar to test no. 4CMB-3, the soil in the region of the impact was heavily compacted. The 

vehicle made contact with the back slope before contacting the barrier. Upon impact with the 

barrier, the vehicle was adequately contained and redirected. It remained upright, and there were 

no significant penetrations into the occupant compartment. The test was determined to be 

acceptable according to the TL-3 safety performance criteria for test designation no. 3-10 found 

in MASH. More information about the prototype barrier system and the test, including the test 

summary sheet, is provided in Appendix B, Figure B-7. 

For test no. 4CMB-5, a 5,149-lb (2,336-kg) pickup truck (2270P vehicle) impacted the 

high-tension, 4-cable median barrier at a speed of 61.8 mph (99.5 km/h) and at a 26.5-degree 

angle. The barrier was located on the front slope of the V-ditch, 12 ft (3.6 m) laterally from the 

front slope break point. The point of impact was 12 in. (305 mm) upstream of post no. 15. The 

left-front bumper impacted the post, causing it to begin to rotate downward. As the post rotated, 

all of the cables were pulled down with it, including the top cable. This action allowed the 

vehicle to completely override the barrier, as shown in Figure 32. Only the right-rear wheel was 

snagged by a cable. As a result, the vehicle impacted the back slope and rolled over. The test 

failed to meet the TL-3 safety performance criteria for test designation no. 3-10 found in MASH. 

More information about the prototype barrier system and the test, including the test summary 

sheet, is provided in Appendix B, Figure B-8. 
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Impact, Time = 0.000 sec 

 

 
Override, Time = 0.090 sec 

 

Figure 32. Impact with Post and Barrier Override, Test No. 4CMB-5 
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The system failure of full-scale crash test no. 4CMB-5 demonstrated another critical 

vulnerability for cable barriers installed within sloped median ditches. Specifically, there is 

increased likelihood for barrier override when a 2270P vehicle impacts the cable barrier just 

upstream from a post. In order to increase the likelihood of vehicle capture, the top cable-to-post 

attachments must release the cable away from a post very quickly to prevent it from being pulled 

down and/or the top cable must be positioned higher. 

For test no. 4CMBLT-1, a 3,470-lb (1,574-kg) passenger car (1500A vehicle) impacted 

the high-tension, 4-cable median barrier at a speed of 62.2 mph (100.1 km/h) and at a 25.3-

degree angle. The barrier system was placed on level terrain. The point of impact was 64 in. 

(1,626 mm) downstream from post no. 16. Upon impact with the barrier, the vehicle was 

adequately contained, redirected, and remained upright, but the A-pillar was crushed by a cable, 

resulting in significant damage to the roof, windshield, and penetration into the occupant 

compartment. When the A-pillar was being crushed, the critical cable was still attached to the 

downstream post, as shown in Figure 33. The resulting damage is shown in Figure 34. The test 

failed to meet the TL-3 performance criteria found in MASH. More information about the 

system and the test, including the test summary sheet, is provided in Appendix B, Figure B-9. 

For convenience, all nine full-scale vehicle crash tests into the prototype low- and high-

tension, cable barriers are summarized in Table 2. 
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Figure 33. A-Pillar Beginning to Crush, Test No. 4CMBLT-1 

 
Figure 34. Vehicle Damage, Test No. 4CMBLT-1 
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Table 2. Summary of Full-Scale Vehicle Crash Tests into Low- and High-Tension, Cable Barrier Systems 

Test No. System Description Cable-to-Post 
Attachments Vehicle Pass/Fail Notes 

CMB-1 Low-tension, 4-cable median barrier 
on level terrain, weaved cables 

Standard cable hook 
bolts 

Small car 
(820C) Fail Vehicle rolled over 

CMB-2 Low-tension, 4-cable median barrier 
on level terrain Rigid cable brackets Small car 

(820C) Pass  

CMB-3 Low-tension, 4-cable median barrier 
on level terrain 

Rigid cable brackets 
with retainer bolts 

Pickup 
(2000P) Pass  

4CMB-1 High-tension, 4-cable median barrier 
on 4V:1H sloped V-ditch 

Curved keyway 
brackets 

Pickup 
(2270P) Pass  

4CMB-2 
High-tension, 4-cable median barrier 
on 4V:1H sloped V-ditch, soft soil in 

impact region 

Curved keyway 
brackets 

Small car 
(1100C) 

Marginal 
Pass 

Longitudinal OIV 
exceeded 40 ft/s (12.2 

m/s) MASH limit when 
considering vehicle speed 
loss from tire rutting and 

soil plowing prior to 
barrier contact 

4CMB-3 
High-tension, 4-cable median barrier 

on 4V:1H sloped V-ditch, heavily 
compacted soil in impact region 

Curved keyway 
brackets 

Small car 
(1100C) Fail A-pillar was crushed 

4CMB-4 
High-tension, 4-cable median barrier 

on 4V:1H sloped V-ditch, heavily 
compacted soil in impact region 

A449 keyway bolts Small car 
(1100C) Pass  

4CMB-5 High-tension, 4-cable median barrier 
on 4V:1H sloped V-ditch A449 keyway bolts Pickup 

(2270P) Fail Vehicle overrode barrier 
and rolled over 

4CMBLT-1 High-tension, 4-cable median barrier 
on level terrain A449 keyway bolts 

Passenger 
car 

(1500A) 
Fail A-pillar was crushed 
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3.4 Conclusions 

Following a review of MwRSF’s full-scale crash testing program on cable barriers, two 

problems were very clearly identified that were directly related to the behavior of the cable-to-

post attachments. The first problem was excessive penetration into the occupant compartment 

due to A-pillar crushing. The second problem was barrier override when the vehicle impacted the 

system at a post. Both problems were caused by failure of cables to adequately release from the 

posts. 

A-pillar crushing had now occurred on more than one occasion, manifesting itself first in 

full-scale crash test no. 4CMB-3, and again in full-scale crash test no. 4CMBLT-1. In test no. 

4CMB-3, the A-pillar was crushed because a protruding shoulder bolt snagged one of the cables, 

restricting it from releasing upward along a post. The snagging problem was solved by replacing 

the keyway brackets with the keyway bolts in test no. 4CMB-4. However, the A-pillar was again 

crushed by a cable in test no. 4CMBLT-1, where several factors may have contributed to this 

result. The keyway bolt delayed cable release away from the downstream post. Ideally, a cable 

with the potential to crush the A-pillar should be allowed to slide up and over the A-pillar rather 

than cutting into it. Thus, several design changes were considered in an attempt to mitigate this 

type of failure and are provided below: 

 Decrease cable pre-tension to reduce the load imparted to the A-pillar; 

 Alter cable heights or vertical cable spacing; 

 Choose a weaker post to encourage the post to bend more when loaded laterally, 

giving the cable more freedom to deflect; 

 

 Change the number of cables used. 

 Move top cable-to-post attachments from side of post to middle of post; 

 Modify keyway on post to allow the button head of keyway bolt to release 

quicker; and 
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 Re-design cable-to-post attachments to provide lower vertical release loads. 

 

Even though all of these modifications were to be considered in the next full-scale crash test, the 

R&D effort described herein only addressed the last three suggestions. 

As previously noted, vehicle override was observed in test no. 4CMB-5. It was learned 

that a cable barrier is particularly susceptible to this type of failure when a vehicle impacts just 

upstream of a post. It has been believed that this behavior may be mitigated with the use of 

cable-to-post attachments which release the top cable away from posts much quicker rather than 

allowing it to be pulled down with the rotating post. Quick cable release could be achieved with 

a reduced lateral and/or vertical capacity for the top cable-to-post attachment. 

With these two problems clearly identified, the next step was to determine the minimum 

design loads associated with horizontal and vertical curves as a function of post spacing, and to 

determine target capacities for the vertical and lateral cable release out of the cable-to-post 

attachments at all four cable heights. This process is presented in Chapter 4. 
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4 DETERMINATION OF DESIGN LOADS 

4.1 Introduction 

Following the system failures observed in full-scale crash test nos. 4CMB-5 and 

4CMBLT-1, as discussed in Chapter 3, an effort was initiated to re-design the cable-to-post 

attachment hardware and associated release mechanisms. Thus, it was deemed necessary to 

determine: (1) the minimum design loads associated with horizontal and vertical curves as a 

function of post spacing and (2) the desired capacities for vertical and lateral cable release out of 

the cable-to-post attachments at all four cable heights. 

4.2 Prior Cable-to-Post Attachments—Capacity and Performance 

The curved keyway brackets, as shown in Figures 25 and 26 of Chapter 3, had lateral and 

vertical release loads of 5.72 kips (25.4 kN) and 1.00 kips (4.45 kN), respectively [9]. The 

shoulder bolts, which attached the curved keyway bracket to the post, were relatively bulky and 

protruded away from the post at a right angle. In full-scale crash test no. 4CMB-3, the impacting 

vehicle’s A-pillar was crushed by a restrained cable that vertically snagged on a protruding 

shoulder bolt. 

The A449 keyway bolts, as shown in Figures 28 through 30 of Chapter 3, had lateral and 

vertical release loads of 8.00 kips (35.6 kN) and 1.18 kips (5.25 kN), respectively [71]. The 

keyway bolts did not show the same tendency to snag the lower cables as observed with the 

protruding shoulder bolt of the curved keyway brackets. However, the A449 keyway bolts may 

have excessively delayed cable release away from a post, which likely contributed to significant 

crushing of the vehicle’s A-pillar in test no. 4CMBLT-1. Furthermore, test no. 4CMB-5 

demonstrated that the A449 keyway bolts were too strong in the vertical direction and 

demonstrated a propensity for pulling cables down when positioned on the back side of a rotating 
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post, thus compromising the capture of a 2270P vehicle. Therefore, the release behavior needed 

to be changed. 

4.3 Minimum Design Loads Due to Vertical Curves 

Cable median barriers installed along roadways with changes in vertical and horizontal 

alignment will encounter load conditions which tend to push cables against the post, pull cables 

away from posts, lift cables up, or push cables down at the cable-to-post attachment. A vertical 

change in cable slope between posts will result in a vertical force being applied at the point 

where the slope changes (i.e., the cable-to-post attachment). 

Cable tension also increases when the ambient air temperature decreases in a cable 

barrier with rigid anchors at the ends. On the contrary, cable tension decreases when the ambient 

air temperature increases. The expansion or contraction of a fixed-length, anchored cable will 

result in changes in axial stress according to Hooke’s Law. 

Vertical curves along roadways are designed to be parabolic in shape. For a parabolic 

curve, the rate of change of the slope (the slope gradient) is constant. The AASHTO Green 

Book, A Policy on Geometric Design of Highways and Streets [72] refers to the tangent slopes of 

the roadway as grades, which are expressed as percents—not the actual decimal form. A vertical 

curve with horizontal length, L, and tangent grades, G1 and G2, at its ends, as shown in Figure 

35, will have a value, K, associated with it such that K = L/A, where A is the algebraic difference 

between the two tangent grades. 
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Figure 35. Typical Parabolic Vertical Curve 

As noted previously, a change in the slope of the cable between adjacent post spans will 

result in a net vertical force on the cable-to-post attachment. This change in the slope will be a 

function of the post spacing and the slope gradient of the vertical curve. In reality, the posts will 

be spaced evenly along the parabolic curve. However, the post spacing was assumed to occur at 

horizontal distance increments, s, as shown in Figure 36. This assumption is actually 

conservative; since; if the spacing, s, were along the curve, the horizontal distance between posts 

would be less than s. 
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Figure 36. Cable System on a Parabolic Vertical Curve 

The general equation for a parabola is given below. 

           

 Where  y = vertical coordinate of the roadway 

   x = horizontal coordinate of the roadway 

   a, b, and c are arbitrary coefficients 

 

The first derivative provides the general form of the equation for the slope gradient and is 

given by Equation 4.1. 

  

  
          (4.1) 

If the origin is placed at the beginning of the vertical curve, where the tangent grade is G1 

(a percent), the slope gradient at x = 0 is given by Equation 4.2. 

(
  

  
)
   

   
  

   
    (4.2) 

  Where  G1 = tangent grade (as a percent) at the beginning of  

     the vertical curve (i.e., x = 0) 
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At x = L, the end of the curve, the tangent grade is G2 (a percent), as shown in Equation 

4.3. 

(
  

  
)
   

           
  

   
 

  

   
   (4.3) 

  Where  L =  horizontal length of curve 

    G2 = tangent grade (as a percent) at the end of the vertical 

     curve (i.e., x = L) 

 

Solving for “a” in Equation 4.3 gives Equation 4.4. 

  
     

    
 

 

    
 

 

   (
 

 
)
    (4.4) 

  Where  A = algebraic difference between the two tangent grades 

 

Recall that K = L/A. Therefore, the coefficient, a, can be expressed in terms of K, as 

shown in Equation 4.5. 

  
 

    
     (4.5) 

It can be shown that the difference in the slope of the cable between two adjacent spans 

of cable, as shown in Figure 37, is given by Equation 4.6. This derivation is provided in 

Appendix C. 

 
Figure 37. Change in Slope Between Post Spans 
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    (4.6) 

 Where  m1 = cable slope on left side of attachment (see Figure 37) 

   m2 = cable slope on right side of attachment (see Figure 37) 

   s = post spacing 

A free body diagram of the forces acting on the cable-to-post attachment between the two 

spans of cable with slopes m1, and m2, is shown in Figure 38. 

 
Figure 38. Free Body Diagram of Cable-to-Post Attachment on Vertical Curve 

The y-direction forces were set equal to zero. 

∑                     

                  (4.7) 

 Where  RV = vertical reaction of the cable-to-post attachment 

   T = cable tension 

   α = reference angle (see Figure 38) 

   β = reference angle (see Figure 38) 

 

The reference angle, α, is the sum of the other two reference angles, β and ϒ. 

                                  (4.8) 

  Where  ϒ = difference angle (see Figure 38) 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

55 

 

The difference angle, ϒ, as shown in Figure 38, will be very small. 

                        

Therefore, Equation 4.8 becomes Equation 4.9. 

                       (4.9) 

The tangent of the angle, ϒ, is the difference of the two slopes, m1 and m2. Therefore, 

Equation 4.7 can be combined with Equations 4.9 and 4.6.  

                                         

    
 

    
        (4.10) 

Equation 4.11 gives the maximum vertical reaction of the cable-to-post attachment, 

which will occur when the value of β is zero (i.e., one of the cable spans has a horizontal slope). 

         
 

    
      (4.11) 

 Where  T =  cable tension 

   s =  post spacing 

   K =  horizontal length per percent algebraic difference  

    in intersecting grades 

 

The Green Book [72] specifies minimum K-values for different types of curves and for 

different highway design speeds. This guidance accounts for stopping and passing sight distance. 

For more information on highway design geometry, refer to the Green Book. There are two types 

of vertical curves—sag and crest. Their names describe their shapes. In a crest, the curvature is 

negative, and the net vertical force on the cable-to-post attachments as a result of the change in 

slope between two adjacent post spans will be in the downward direction. In a sag, the curvature 

is positive, and the net vertical force will be in the upward direction. 

The K-value for a sag vertical curve on a highway with a design speed of 40 mph (72 

km/h) is 64 ft (19.5 m). For an 8-kip (36-kN) cable tension, the change in the slope of the cable 
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between two adjacent, 16-ft (4.9-m) post spans, on a 40-mph (64 km/h) sag vertical curve, will 

produce a 20-lb (89-N) uplift force at the cable-to-post attachments. For comparison, the weight 

of a 16-ft (4.9-m) length of cable is approximately 13 lb (58 N). The design speed for most 

highways will be greater than 40 mph (64 km/h), so the K-values will be greater than 64 ft (19.5 

m), resulting in even smaller vertical forces on the cable-to-post attachments. As the rest of the 

analysis will show, the pre-impact, vertical loads on the cable-to-post attachments were relatively 

insignificant. 

4.4 Minimum Design Loads Due to Horizontal Curves 

In the same way, a horizontal change in cable slope between posts may result in a lateral 

force being applied on the cable-to-post attachments, depending on which side of the post the 

cable is positioned. 

For a given cable tension, lateral forces on the cable-to-post attachments vary with the 

post spacing and radius of the cable curve. A hypothetical horizontal curve is shown in Figure 

39, and a free body diagram of a post within that curve is shown in Figure 40. 

 
Figure 39. Cable Barrier on a Horizontal Curve 
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Figure 40. Free Body Diagram of a Post within a Horizontal Curve 

For large radius, R and small angle, θ, the straight line distance between the posts (i.e. the 

post spacing) and the arc length, s, are approximately equal. Summing the y-direction (lateral) 

forces in Figure 40, gives Equation 4.12. 

∑          
 

 
   

       
 

 
    (4.12) 

 Where  T = cable tension 

   θ = reference angle (see Figures 39 and 40) 

 

The curve radius, R, will be much larger than the post spacing, s. The arc length and the 

post spacing are approximately equal. Therefore, θ will be small and approximately equal to sin 

θ. 

       
 

 
 

       
 

 
   (

 

 
)      (

 

 
)    (4.13) 
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Equation 4.13 is a useful relationship for determining the maximum allowable post 

spacing on a horizontal curve. All previous full-scale crash tests used a post spacing of 16 ft (4.9 

m). For a design cable tension of 8 kips (36 kN) and lateral cable-to-post attachment strength, F, 

the maximum allowable post spacing as a function of the curve radius is shown in Figure 41. 

 
Figure 41. Maximum Post Spacing vs. Horizontal Curve Radius 

The cable barrier’s radius will be related to the roadway curve radius. The Green Book 

[72] specifies minimum radii for given design speeds and super-elevations. For a super-elevation 

of 8.0%, the minimum radii for different design speeds are shown in Table 3. 

0

10

20

30

40

50

60

70

450 650 850 1050 1250 1450 1650 1850 2050 2250 2450M
ax

im
u

m
 P

o
st

 S
p

ac
in

g,
 s

 (
ft

)

Horizontal Curve Radius, R (ft)

Maximum Spacing vs. Curve Radius

F= 200 lb F = 100 lb Current Spacing



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

59 

Table 3. Design Speed vs. Minimum Curve Radius 

Design Speed 

mph (km/h) 

Minimum Curve Radius 

ft (m) 

40 (64) 444 (135) 

45 (72) 587 (179) 

50 (80) 758 (231) 

55 (89) 960 (293) 

60 (97) 1,200 (366) 

65 (105) 1,480 (451) 

70 (113) 1,810 (552) 

75 (121) 2,210 (674) 

80 (129) 2,675 (814) 

 

The high-tension, cable median barrier will be used primarily for highways with design 

speeds greater than 55 mph (89 km/h), so the curve radius is not likely to be less than 960 ft (293 

m). Due to concerns for the top cable to be pulled downward when the post is impacted by a 

vehicle (as seen in full scale test no. 4CMB-5), the lateral strength of the top cable-to-post 

attachments should be limited. 

As shown in Figure 41 for a 16-ft (4.9-m) post spacing, a 200-lb (8905-N) lateral strength 

of the top cable-to-post attachment would be adequate for curve radii greater than 640 ft (195 m), 

covering the full range of design speeds of 55 mph (89 km/h) or greater. For a 16-ft (4.9-m) post 

spacing, a 100-lb (445-N) lateral strength of the top cable-to-post attachment would be adequate 

for curve radii greater than 1,280 ft (390 m), but if the post spacing were decreased to 12 ft (3.7 

m), it would be adequate for curve radii greater than 960 ft (293 m). 

These numbers are based on a design tension of 8,000 lb (36 kN). For cable tensions 

higher than 8,000 lb (36 kN), the post spacing would probably need to be decreased even further, 

depending on the curve radius and the actual lateral cable-to-post attachment strength. Thus, 

Equation 4.13 should be used to determine the limits for post spacing for different horizontal 
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curve radii based on a maximum cable tension and the actual lateral cable release capacity of the 

selected cable-to-post attachment. 

4.5 Target Lateral and Vertical Cable Release Capacities 

In light of all of these observations, some targets were set to guide the design process. 

The desired behavior was more important than the target strength. The top cable-to-post 

attachments would need to hold the cable in place before an impact, but easily and quickly 

release the cable when a post was impacted and began to rotate backward and downward. A 

target range of 100 to 200 lb (445 to 890 N) was chosen for the lateral and vertical cable release 

loads for the top cable-to-post attachment. 

As a starting point, a target vertical release of 225 lb (1.00 kN) was set for the lower three 

cable-to-post attachments. This value reflected a significant reduction from the 1.18-kip (5.25-

kN) vertical resistance of the keyway bolts used in the most recent designs. The goal was to 

ensure that if a vehicle’s A-pillar became positioned under the cable and began to push up on it 

(as observed in full scale crash test no. 4CMBLT-1), the cable would quickly release away from 

the post, introducing slack to the cable so that the normal force exerted by the cable on the A-

pillar would not crush the A-pillar. In addition to the targeted vertical cable release load, the 

lower three cable-to-post attachments would be designed with a targeted lateral release load of 

6.00 kips (26.7 kN). The goal was for the cable-to-post attachments to be able to develop the full 

moment capacity of the post when loaded laterally. 
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5 OVERVIEW OF IMPROVED KEYWAY BOLTS—ROUND 1 

5.1 Introduction 

Previously, the desired vertical and lateral cable release loads for the cable-to-post 

attachments at all four cable heights were determined. Thus, the next step was to design and test 

new cable-to-post attachments for the bottom three cables. The obvious place to start was with 

the keyway bolts that had been used in the most recent full-scale vehicle crash tests. The keyway 

bolt concept was desirable for three main reasons. First, it employed two different release 

mechanisms. When pulled laterally, the button head would become caught in the narrow part of 

the keyway, and the cable would continue to pull on the bolt until it fractured through the 

threads. When pulled vertically, the bolt would bend upward and allow the button head to rotate 

up and out of the keyway. These two different release mechanisms allowed the vertical and 

lateral release behaviors to be treated independently to some degree. Second, the bolt was 

deliberately curved to avoid jagged, right-angle protrusions from extending off of the flange, 

which may tend to snag cables. Third, it was simple, consisting of only two pieces—a bolt and 

nut. 

5.1.1 Dynamic Bogie Tests 

All of the designs presented in this chapter were later tested and evaluated using dynamic 

bogie testing described in Chapter 6, unless otherwise noted. Different load orientations were 

used in order to determine the vertical and lateral release loads for each concept under dynamic 

loading conditions. 

5.1.2 Keyway Bolt Basics 

The keyway bolts used in test nos. 4CMB-4, 4CMB-5, and 4CMBLT-1 had been 

designed, tested, and evaluated in a previous component testing effort by MwRSF [71]. The final 

keyway bolts from that design effort consisted of a ¼-in. (6-mm) diameter, curved shaft, a ½-in. 
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(13-mm) diameter by ¼-in. (6-mm) thick button head at one end, and a shoulder and threads at 

the other end, as shown in Figure 42a. The threaded end was inserted into the bottom hole and 

was secured to the flange of the S3x5.7 (S76x8.5) steel post with a ¼-in. (6-mm), SAE grade 8 

nut, while the button- head end sat in the narrow part of the keyway, as shown in Figure 42b. The 

keyway bolts were made of galvanized, ASTM A449 steel, which had a minimum yield strength 

of 92 ksi (630 MPa) and a minimum ultimate tensile strength of 120 ksi (830 MPa). AISI C1018 

keyway bolts were also tested. The AISI C1018 steel had a minimum yield strength of 54 ksi 

(370 MPa) and a minimum ultimate tensile strength of 64 ksi (440 MPa). 

  

  a) Design Details    b) Seated in Keyway 

Figure 42. Keyway Bolt—(a) Design Details and (b) Seated in Keyway 

The dual-width keyway consisted of a 5/16-in. (8-mm) diameter hole, where the upper 

shaft of the keyway bolt was positioned, overlapped by a 5/8-in. (16-mm) diameter hole, which 

was part of a longer slotted opening, as shown in Figure 43. The dual-width feature allowed the 

button head to be caught in the narrow part of the keyway when pulled laterally but clear the 

wide part of the keyway when pulled vertically. The main problem with the keyway bolt in the 

dual-width keyway was the tendency for the button head to scrape against the inside of the flange 
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when the bolt was pulled vertically. This scraping action contributed to much higher vertical 

release loads than if the button head had been free of scraping. 

 
Figure 43. Dual-Width Keyway 

The ASTM A449 keyway bolts, used with the dual-width keyway, had a vertical release 

load of 1.18 kips (5.25 kN) and a lateral release load of 8.00 kips (35.6 kN). The AISI C1018 

keyway bolts, used in the same keyway, had vertical and lateral release loads of 0.81 kips (3.60 

kN) and 6.47 kips (28.8 kN) respectively. 

5.2 First Round Design Modifications 

For the first round of design modifications, three slightly different keyway bolts were 

considered, along with two different keyways. A total of twenty bogie tests were performed, as 

later discussed in Chapter 7. There were a total of four tests for each concept—two for each load 

orientation—in order to test their vertical and lateral strengths. Each concept, and the thought 

process behind it, will be discussed in detail in Subsections 5.2.1 through 5.2.3. 

5.2.1 Small Oversized Keyway 

It was primarily the top two cables which had caused the problems which led to failures 

in full-scale crash test nos. 4CMB-5 and 4CMBLT-1. The oversized keyways were originally 

designed with only the top two cables in mind. If they were going to be used at all, then they 
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would only be used for those two cables. The bottom two cables would use the same dual-width 

keyway that had been used previously. 

For both of the oversized keyways, the narrow part was eliminated, as shown by the top 

hole in Figure 44a. The small oversized keyway was designed so that when viewed from the 

inside of the flange, the button head of the keyway bolt overlapped the bottom of the keyway by 

1/16 in. (2 mm). When the small oversized keyway was compared to the dual-width keyway, it 

could be seen that there was significantly less backside flange area for the button head to scrape 

against when pulled vertically as well as significantly less area for the button head to bear against 

when pulled laterally. Both the lateral and vertical release loads would likely be affected. 

  
  a) Dimensions   b) With Keyway Bolt Installed 

Figure 44. Small Oversized Keyway—(a) Dimensions and (b) With Keyway Bolt Installed 

5.2.2 Large Oversized Keyway 

The small and large oversized keyways were nearly identical. The large oversized 

keyway, as shown in Figure 45, was 1/8 in. (3 mm) longer than the small oversized keyway. 

Thus, the button head of the keyway bolt did not overlap the bottom of the keyway. The large 
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oversized keyway was tested to determine a baseline release behavior when the button head of 

the keyway bolt did not contact the inside of the flange. Testing would demonstrate whether the 

absence of the 1/16-in. (2-mm) overlap between the button head of the keyway bolt and the 

bottom of the large oversized keyway would affect release loads. 

  
  a) Dimensions    b) With Keyway Bolt Installed 

Figure 45. Large Oversized Keyway—(a) Dimensions and (b) With Keyway Bolt Installed 

5.2.3 Modified Keyway Bolt 

The last concept that would be tested in the first round of modifications was the modified 

keyway bolt placed in the large oversized keyway. Originally, the modified keyway bolt would 

be tested with both oversized keyways. However, it was apparent that the small oversized 

keyway performed inconsistently when the bolt was loaded laterally. Thus, the modified keyway 

bolt was only tested with the large oversized keyway. The modified keyway bolt, as shown in 

Figure 46, was designed and tested with the dual-width keyway that was used in the previous 

cable-to-post attachment testing program [71]. Only the AISI C1018 modified keyway bolts 

were tested. 
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    a) Dimensions  b) Installed in Large Oversized Keyway 

Figure 46. Modified Keyway Bolt—(a) Dimensions and (b) Installed in Large Oversized 

Keyway 

The modified keyway bolt was shaped differently than the original keyway bolts. Due to 

its shape, the cable load direction would be perpendicular to the modified keyway bolt at the 

point of contact when pulled vertically. Testing would demonstrate whether this difference in the 

shape of the bolt would affect the release behavior. 
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6 CABLE-TO-POST ATTACHMENT DYNAMIC COMPONENT TEST CONDITIONS 

6.1 Purpose 

Dynamic component tests were used to evaluate the structural capacity and behavior of 

the cable-to-post attachments before implementation into a barrier system and subjected to a full-

scale crash test. These component tests were designed with two purposes in mind: (1) to 

demonstrate the performance of the various cable-to-post attachment designs when subjected to 

cable loads at dynamic speeds and (2) to measure the fracture and release loads of the 

attachment. It should be noted that the cable used in the dynamic bogie tests was a ¾-in. (19-

mm) diameter 6x19 wire rope, and the actual cable used in the high-tension cable barrier was a 

¾-in. (19-mm) diameter 3x7 wire rope. 

6.2 Scope 

A series of twenty-eight bogie tests were conducted on different keyway bolt designs, as 

presented in Chapters 7 and 9. In addition, forty-two bogie tests were conducted on different 

tabbed bracket designs, as discussed in Chapters 11, 13, and 15. These tests consisted of 

attaching one end of a cable to a bogie and the other end to the cable-to-post attachment. The 

cable-to-post attachment was mounted to a rigid post section which was contained within the test 

jig. The test jig was fixed to a steel shaft outfitted with a load cell, which later was anchored to a 

rigid concrete block. The bogie was then set in motion, away from the bracket, placing a 

dynamic load on the connection until cable release from or fracture of the attachment occurred. 

The target cable speed was 5.0 mph (8.0 km/h). An adjustable plate was used with the post, 

which allowed the cable to be pulled at either a 90-degree or 0-degree angle to the face of the 

post, simulating either a lateral or vertical load condition. 
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6.3 Test Facility 

Physical testing was conducted at the MwRSF outdoor testing facility, which is located at 

the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport. The facility is 

approximately 5 miles (8 km) northwest from UNL’s city campus. 

6.4 Equipment and Instrumentation 

Several types of equipment and instrumentation were utilized to collect and record data 

during the cable-to-post attachment dynamic component tests, including a bogie vehicle, a 50-kip 

(222-kN) load cell, accelerometers, an optic speed trap, high-speed and standard-speed digital 

video cameras, and digital still cameras. 

6.4.1 Bogie 

A rigid-frame bogie was used to pull on a cable which was anchored to the cable-to-post 

attachment. The bogie with the test setup is shown in Figure 47. The bogie weights were 

different for each round of tests, as shown in Table 4. A pickup truck, with a reverse cable tow 

system, was used to propel the bogie along a guidance track to a target speed of 5.0 mph (8.0 

km/h). The pickup truck braked allowing the bogie to be free rolling as the bogie approached the 

end of the guidance system and applied the load to the cable-to-post attachment. 
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Figure 47. Rigid Frame Bogie on Guidance Track 

Table 4. Bogie Weights 

Test Nos. 
Bogie Weight, 

lb (kg) 

HTCUB-38 through HTCUB-47, HTCUB-50 and HTCUB-51 1,616 (733) 

HTCUB-48, HTCUB-49, and HTCUB-52 through HTCUB-57 1,612 (731) 

HTCUB-58 through HTCUB-61 1,528 (693) 

HTCUB-62 through HTCUB-65 1,861 (844) 

HTTB-1 through HTTB-8 1,765 (800) 

HTTB-9 through HTTB-16 1,866 (846) 

HTTB-17 through HTTB-40 Not weighed 

 

6.4.2 Load Cell 

A 50-kip (222-kN) capacity load cell was used to measure the force exerted on the test 

article by the cable until the cable released. This load cell was placed in a tension configuration 

between the post section and the anchor plate mounted on the rigid concrete block. 
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6.4.3 Optic Speed Trap 

The retroreflective optic speed trap was used to determine the speed of the bogie vehicle 

before impact for test nos. HTCUB-38 through HTCUB-47, HTCUB-50 and HTCUB-51, and 

HTCUB-58 through HTCUB-61. Five retroreflective targets, spaced at 4-in. (102-mm) intervals, 

were applied to the side of the bogie vehicle and used to break the beam of light. When the 

emitted beam of light was returned to the Emitter/Receiver, a signal was sent to the Optic 

Control Box, which in turn sent a signal to the data computer as well as activated the External 

LED box. The computer and data acquisition system recorded the signals and the associated 

time. The speed was then calculated using the spacing between the retroreflective targets and the 

time between the signals. LED lights and high-speed digital video analysis are only used as a 

backup in the event that vehicle speeds cannot be determined from the electronic data. 

6.4.4 Digital Photography 

Two AOS X-PRI high-speed digital video cameras and one JVC digital video camera 

were used to document test nos. HTCUB-38 through HTCUB-61. One AOS X-PRI high-speed 

digital video cameras and one JVC digital video camera were used to document test nos. 

HTCUB-62 through HTCUB-65, HTTB-1 through HTTB-8, and HTTB-17 through HTTB-40. 

One AOS S-VIT high-speed digital camera and one JVC digital video camera were used to 

document test nos. HTTB-9 through HTTB-16. The AOS high-speed cameras had a frame rate of 

500 frames per second and the JVC digital video camera had a frame rate of 29.97 frames per 

second. A Nikon D50 digital still camera was also used to document pre- and post-test conditions 

for all tests. 

6.4.5 Test Jig 

The test jig was mounted to a small section of steel post as well as a steel shaft, which 

was anchored to a mounting plate placed on the side of a rigid block. The test article (either a 
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keyway bolt or tabbed bracket) was attached to the post section. The test jig could be adjusted to 

change the angle at which the cable pulled on the test article. The steel tube or shaft was attached 

to the mounting plate by a cylindrical joint which allowed a tension load cell to be used to 

measure the loads. A looped cable was placed through the test article, as shown in Figure 48. The 

other end of the cable was attached to the bogie, which was towed to a speed of approximately 5 

mph (8 km/h). 

 
Figure 48. Test Jig 

6.5 Data Processing 

Force data was measured with the load cell transducer and filtered using the SAE Class 

60 Butterworth filter conforming to the SAE J211 specifications [73]. Filtered voltage data was 

converted to load using the following equation: 
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Details behind the theory and equations used for processing and filtering the load cell data are 

located in SAE J211. The gain and excitation voltage were recorded in the field book for each 

test. The full-scale load was 50 kips (222 kN). The calibration factor varied depending on the 

specific load cell being used. The load cell data was recorded in a data file and processed in a 

specifically designed Excel spreadsheet. 

6.6 Loading Event Determination 

Once the data was processed, the period of the loading event was determined. In the data 

set and before the load was applied, the data signal oscillated between positive and negative 

values, close to zero. The peak load time was easily distinguishable as a large, positive spike in 

the voltage data. The loading event was the prolonged, positive voltage data period which 

included the peak load time and lasted until the data went negative again. After the loading 

event, the data returned to an oscillating positive and negative pattern until the end of recording. 

Once the loading event was determined, the data was matched up with the high-speed 

video. However, it was somewhat difficult to distinguish the beginning of the loading event 

when using the high-speed video. It was much easier to distinguish the release of the test article, 

and hence, the end of the loading event in the video footage. Thus, the beginning of the loading 

event (time zero in the high-speed video) was found by subtracting the duration of the loading 

event (obtained from the load cell data) from the clearly distinguishable release of the cable in 

the high-speed video. 

6.7 Results 

The goal of dynamic component testing was to determine the release behavior of a given 

cable-to-post attachment design. The peak forces were obtained from the load cell data, and the 

behavior of the cable and the cable-to-post attachment at those peaks was observed from the 
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high-speed video. Test results for the keyway bolts as well as the tabbed brackets are given in 

Chapters 7, 9, 11, 13, and 15. 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

74 

7 DYNAMIC COMPONENT TESTS—KEYWAY BOLTS, ROUND 1 

7.1 Results 

In an effort to reach the simplest solution possible, the first part of the re-design effort for 

the cable-to-post attachments involved making slight modifications to the keyway bolts that had 

been used previously. This task was accomplished by varying the shape of the bolt, the steel 

grade of the bolt, and the shape of the keyway. There were two rounds of design modifications 

on the keyway bolts, followed by component testing and evaluation for each round. Twenty 

dynamic component tests (test nos. HTCUB-38 through HTCUB-57) were performed in the first 

round. They are presented in this chapter. Eight more dynamic component tests (test nos. 

HTCUB-58 through HTCUB-65) were performed in the second round, as discussed later in 

Chapters 8 and 9. Each individual concept was tested twice in its vertical orientation and twice in 

its lateral orientation in order to find the strength of the connection in those directions. For the 

sake of convenience, the consolidated drawing set for both rounds of dynamic component testing 

of the keyway bolts is shown in Figures 49 through 58. A summary of the test matrix and results 

for the first round of dynamic components tests is provided in Table 5. 
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Figure 49. Bogie Test Setup, Test Nos. HTCUB-38 through HTCUB-65 
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Figure 50. Test Jig Details, Test Nos. HTCUB-38 through HTCUB-65 
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Figure 51. Test Jig Setup, Test Nos. HTCUB-38 through HTCUB-65 
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Figure 52. Reinforcement for S3x5.7 (S76x8.5), Test Nos. HTCUB-38 through HTCUB-65 
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Figure 53. Reinforcing Gussets and S3x5.7 (S76x8.5) Sections for Oversized Keyways, Test Nos. HTCUB-38 through HTCUB-65 



 

 

8
0
 

A
u

g
u

st 2
9

, 2
0
1

3
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
5
-1

3
 

 
Figure 54. S3x5.7 (S76x8.5) Sections for Dual-Width Keyways, Test Nos. HTCUB-38 through HTCUB-65 
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Figure 55. Keyway Bolt and Modified Keyway Bolt Details, Test Nos. HTCUB-38 through HTCUB-65 
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Figure 56. Extended Keyway Bolt Details, Test Nos. HTCUB-38 through HTCUB-65 



 

 

8
3
 

A
u

g
u

st 2
9

, 2
0
1

3
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
5
-1

3
 

 
Figure 57. Bogie Testing Matrix, Test Nos. HTCUB-38 through HTCUB-65 
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Figure 58. Bill of Materials, Test Nos. HTCUB-38 through HTCUB-65 
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Table 5. Summary of Dynamic Component Testing of Keyway Bolts, Round 1 

Test No. 
Load 

Direction 
Test Article Material Keyway Slot 

Release 

Load 

kips (kN) 

Test Result 

HTCUB-38 Vertical 
Keyway Bolt, 

a1 

ASTM 

A449 

Small 

Oversized, A 

0.49 

(2.2) 

Free release through keyway, button snag 

load = 0.93 kips (4.1 kN) 

HTCUB-39 Vertical 
Keyway Bolt, 

a1 

ASTM 

A449 

Small 

Oversized, A 

0.46 

(2.0) 

Free release through keyway, button snag 

load = 0.84 kips (3.7 kN) 

HTCUB-40 Vertical 
Keyway Bolt, 

a1 

ASTM 

A449 

Large 

Oversized, B 

0.49 

(2.2) 

Free release through keyway, button snag 

load = 0.88 kips (3.9 kN) 

HTCUB-41 Vertical 
Keyway Bolt, 

a1 

ASTM 

A449 

Large 

Oversized, B 

0.42 

(1.9) 

Free release through keyway, button snag 

load = 0.75 kips (3.3 kN) 

HTCUB-42 Vertical 
Keyway Bolt, 

a2 

AISI 

C1018 

Small 

Oversized, A 

0.31 

(1.4) 

Free release through keyway, button snag 

load = 0.53 kips (2.4 kN) 

HTCUB-43 Vertical 
Keyway Bolt, 

a2 

AISI 

C1018 

Small 

Oversized, A 

0.39 

(1.7) 

Free release through keyway, button snag 

load = 0.52 kips (2.3 kN) 

HTCUB-44 Vertical 
Keyway Bolt, 

a2 

AISI 

C1018 

Large 

Oversized, B 

0.28 

(1.2) 

Free release through keyway, button snag 

load = 0.48 kips (2.1 kN) 

HTCUB-45 Vertical 
Keyway Bolt, 

a2 

AISI 

C1018 

Large 

Oversized, B 

0.38 

(1.7) 

Free release through keyway, button snag 

load = 0.60 kips (2.7 kN) 

HTCUB-46 Lateral 
Keyway Bolt, 

a1 

ASTM 

A449 

Small 

Oversized, A 

1.14 

(5.07) 
Free release through keyway 

HTCUB-47 Lateral 
Keyway Bolt, 

a1 

ASTM 

A449 

Small 

Oversized, A 

5.05 

(22.5) 

Button caught on bottom of keyway, release 

through keyway 

HTCUB-48 Lateral 
Keyway Bolt, 

a1 

ASTM 

A449 

Large 

Oversized, B 

0.84 

(3.74) 
Free release through keyway 

HTCUB-49 Lateral 
Keyway Bolt, 

a1 

ASTM 

A449 

Large 

Oversized, B 

1.22 

(5.43) 
Free release through keyway 
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Table 5. Summary of Dynamic Component Testing of Keyway Bolts, Round 1 (Continued) 

Test No. 
Load 

Direction 
Test Article Material Keyway Slot 

Release 

Load 

kips (kN) 

Test Result 

HTCUB-50 Lateral Keyway Bolt, a2 
AISI 

C1018 

Small 

Oversized, A 

0.53 

(2.4) 
Free release through keyway 

HTCUB-51 Lateral Keyway Bolt, a2 
AISI 

C1018 

Small 

Oversized, A 

0.54 

(2.4) 
Free release through keyway 

HTCUB-52 Lateral Keyway Bolt, a2 
AISI 

C1018 

Large 

Oversized, B 

0.54 

(2.4) 
Free release through keyway 

HTCUB-53 Lateral Keyway Bolt, a2 
AISI 

C1018 

Large 

Oversized, B 

1.53 

(6.81) 
Free release through keyway 

HTCUB-54 Lateral 
Modified Keyway 

Bolt, a3 

AISI 

C1018 

Large 

Oversized, D 

2.90 

(12.9) 

Button caught on side of keyway, release 

through keyway 

HTCUB-55 Lateral 
Modified Keyway 

Bolt, a3 

AISI 

C1018 

Large 

Oversized, D 

0.80 

(3.6) 
Free release through keyway 

HTCUB-56 Vertical 
Modified Keyway 

Bolt, a3 

AISI 

C1018 

Large 

Oversized, D 

1.71 

(7.61) 

Button rubbed on side of keyway as it 

released, button snag load = 0.67 kips 

(3.0 kN) 

HTCUB-57 Vertical 
Modified Keyway 

Bolt, a3 

AISI 

C1018 

Large 

Oversized, D 

1.17 

(5.20) 

Button rubbed on side of keyway as it 

released, button snag load = 0.70 kips 

(3.1 kN) 
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7.1.1 Test No. HTCUB-38 (A449 KB, Small, Vertical) 

For test no. HTCUB-38, the cable pulled on the ASTM A449 keyway bolt at an angle of 

0 degrees, parallel to the front face of the flange, thus imparting a vertical load. The keyway bolt 

was attached to the front flange with one grade 8 nut. The small oversized keyway was used for 

this test. As the cable pulled on the bolt, the bolt was bent upward and out of the keyway freely 

with a maximum release load of 494 lb (2.20 kN). A peak load of 932 lb (4.15 kN) occurred as 

the cable became snagged on the button head, after the button head had already cleared the 

keyway. The force versus time plot is shown in Figure 59. Pre- and post-test photographs are 

shown in Figure 60. Sequential photographs are shown in Figure 61. 
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Figure 59. Force-Time Data, Test No. HTCUB-38 
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Figure 60. Pre-Test and Post-Test Photographs, Test No. HTCUB-38 

  
  Time = 0 sec     Time = 0.172 sec 

 

  
  Time = 0.176 sec   Time = 0.180 sec, Release 

 

Figure 61. Sequential Photographs, Test No. HTCUB-38 
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7.1.2 Test No. HTCUB-39 (A449 KB, Small, Vertical) 

For test no. HTCUB-39, the cable pulled on the ASTM A449 keyway bolt at an angle of 

0 degrees, parallel to the front face of the flange, thus imparting a vertical load. The keyway bolt 

was attached to the front flange with one grade 8 nut. The small oversized keyway was used for 

this test. As the cable pulled on the bolt, the bolt was bent upward and out of the keyway freely 

with a maximum release load of 459 lb (2.04 kN). A peak load of 844 lb (3.75 kN) occurred as 

the cable became snagged on the button head, after the button head had already cleared the 

keyway. The force versus time plot is shown in Figure 62. Pre- and post-test photographs are 

shown in Figure 63. Sequential photographs are shown in Figure 64. 
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Figure 62. Force-Time Data, Test No. HTCUB-39 
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Figure 63. Pre-Test and Post-Test Photographs, Test No. HTCUB-39 

  
  Time = 0 sec     Time = 0.244 sec 

 

  
  Time = 0.248 sec   Time = 0.252 sec, Release 

 

Figure 64. Sequential Photographs, Test No. HTCUB-39 
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7.1.3 Test No. HTCUB-40 (A449 KB, Large, Vertical) 

For test no. HTCUB-40, the cable pulled on the ASTM A449 keyway bolt at an angle of 

0 degrees, parallel to the front face of the flange, thus imparting a vertical load. The keyway bolt 

was attached to the front flange with one grade 8 nut. The large oversized keyway was used for 

this test. As the cable pulled on the bolt, the bolt was bent upward and out of the keyway freely 

with a maximum release load of 489 lb (2.18 kN). A peak load of 879 lb (3.91 kN) occurred as 

the cable became snagged on the button head, after the button head had already cleared the 

keyway. The force versus time plot is shown in Figure 65. Pre- and post-test photographs are 

shown in Figure 66. Sequential photographs are shown in Figure 67. 
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Figure 65. Force-Time Data, Test No. HTCUB-40 
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Figure 66. Pre-Test and Post-Test Photographs, Test No. HTCUB-40 

  
  Time = 0 sec     Time = 0.188 sec 

 

  
  Time = 0.192 sec   Time = 0.196 sec, Release 

 

Figure 67. Sequential Photographs, Test No. HTCUB-40 
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7.1.4 Test No. HTCUB-41 (A449 KB, Large, Vertical) 

For test no. HTCUB-41, the cable pulled on the ASTM A449 keyway bolt at an angle of 

0 degrees, parallel to the front face of the flange, thus imparting a vertical load. The keyway bolt 

was attached to the front flange with one grade 8 nut. The large oversized keyway was used for 

this test. As the cable pulled on the bolt, the bolt was bent upward and out of the keyway freely 

with a maximum release load of 415 lb (1.85 kN). A peak load of 748 lb (3.33 kN) occurred as 

the cable became snagged on the button head, after the button head had already cleared the 

keyway. The force versus time plot is shown in Figure 68. Pre- and post-test photographs are 

shown in Figure 69. Sequential photographs are shown in Figure 70. 
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Figure 68. Force-Time Data, Test No. HTCUB-41 
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Figure 69. Pre-Test and Post-Test Photographs, Test No. HTCUB-41 

  
  Time = 0 sec     Time = 0.170 sec 

 

  
  Time = 0.174 sec   Time = 0.178 sec, Release 

 

Figure 70. Sequential Photographs, Test No. HTCUB-41 
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7.1.5 Test No. HTCUB-42 (C1018 KB, Small, Vertical) 

For test no. HTCUB-42, the cable pulled on the AISI C1018 keyway bolt at an angle of 0 

degrees, parallel to the front face of the flange, thus imparting a vertical load. The keyway bolt 

was attached to the front flange with one grade 8 nut. The small oversized keyway was used for 

this test. As the cable pulled on the bolt, the bolt was bent upward and out of the keyway freely 

with a maximum release load of 305 lb (1.36 kN). A peak load of 533 lb (2.37 kN) occurred as 

the cable became snagged on the button head, after the button head had already cleared the 

keyway. The force versus time plot is shown in Figure 71. Pre- and post-test photographs are 

shown in Figure 72. Sequential photographs are shown in Figure 73. 
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Figure 71. Force-Time Data, Test No. HTCUB-42 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25

F
o

rc
e
 (

k
ip

s
)

Time (sec)

CFC 60 Load - Extracted 

  CFC 60 LOAD

HTCUB-42



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

101 

  
Figure 72. Pre-Test and Post-Test Photographs, Test No. HTCUB-42 

  
  Time = 0 sec     Time = 0.200 sec 

 

  
  Time = 0.204 sec   Time = 0.208 sec, Release 

 

Figure 73. Sequential Photographs, Test No. HTCUB-42 
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7.1.6 Test No. HTCUB-43 (C1018 KB, Small, Vertical) 

For test no. HTCUB-43, the cable pulled on the AISI C1018 keyway bolt at an angle of 0 

degrees, parallel to the front face of the flange, thus imparting a vertical load. The keyway bolt 

was attached to the front flange with one grade 8 nut. The small oversized keyway was used for 

this test. As the cable pulled on the bolt, the bolt was bent upward and out of the keyway freely 

with a maximum release load of 390 lb (1.73 kN). A peak load of 516 lb (2.30 kN) occurred as 

the cable became snagged on the button head, after the button head had already cleared the 

keyway. The force versus time plot is shown in Figure 74. Pre- and post-test photographs are 

shown in Figure 75. Sequential photographs are shown in Figure 76. 
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Figure 74. Force-Time Data, Test No. HTCUB-43 
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Figure 75. Pre-Test and Post-Test Photographs, Test No. HTCUB-43 

  
  Time = 0 sec     Time = 0.242 sec 

 

  
  Time = 0.246 sec   Time = 0.250 sec, Release 

 

Figure 76. Sequential Photographs, Test No. HTCUB-43 
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7.1.7 Test No. HTCUB-44 (C1018 KB, Large, Vertical) 

For test no. HTCUB-44, the cable pulled on the AISI C1018 keyway bolt at an angle of 0 

degrees, parallel to the front face of the flange, thus imparting a vertical load. The keyway bolt 

was attached to the front flange with one grade 8 nut. The large oversized keyway was used for 

this test. As the cable pulled on the bolt, the bolt was bent upward and out of the keyway freely 

with a maximum release load of 282 lb (1.25 kN). A peak load of 475 lb (2.11 kN) occurred as 

the cable became snagged on the button head, after the button head had already cleared the 

keyway. The force versus time plot is shown in Figure 77. Pre- and post-test photographs are 

shown in Figure 78. Sequential photographs are shown in Figure 79. 
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Figure 77. Force-Time Data, Test No. HTCUB-44 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

F
o

rc
e
 (

k
ip

s
)

Time (sec)

CFC 60 Load - Extracted 

  CFC 60 LOAD

HTCUB-44



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

107 

  
Figure 78. Pre-Test and Post-Test Photographs, Test No. HTCUB-44 

  
  Time = 0 sec     Time = 0.116 sec 

 

  
  Time = 0.120 sec   Time = 0.124 sec, Release 

 

Figure 79. Sequential Photographs, Test No. HTCUB-44 
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7.1.8 Test No. HTCUB-45 (C1018 KB, Large, Vertical) 

For test no. HTCUB-45, the cable pulled on the AISI C1018 keyway bolt at an angle of 0 

degrees, parallel to the front face of the flange, thus imparting a vertical load. The keyway bolt 

was attached to the flange with one grade 8 nut. The large oversized keyway was used for this 

test. As the cable pulled on the bolt, the bolt was bent upward and out of the keyway freely with 

a maximum release load of 379 lb (1.69 kN). The peak load of 601 lb (2.67 kN) occurred as the 

cable became snagged on the button head, after the button head had already cleared the keyway. 

The force versus time plot is shown in Figure 80. Pre- and post-test photographs are shown in 

Figure 81. Sequential photographs are shown in Figure 82. 
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Figure 80. Force-Time Data, Test No. HTCUB-45 
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Figure 81. Pre-Test and Post-Test Photographs, Test No. HTCUB-45 

  
  Time = 0 sec     Time = 0.214 sec 

 

  
  Time = 0.218 sec   Time = 0.222 sec, Release 

 

Figure 82. Sequential Photographs, Test No. HTCUB-45 
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7.1.9 Test No. HTCUB-46 (A449 KB, Small, Lateral) 

For test no. HTCUB-46, the cable pulled on the ASTM A449 keyway bolt at an angle of 

90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The small oversized keyway 

was used for this test. As the cable began to pull on the bolt, the button head was not caught or 

snagged on the bottom or side of the keyway but released through the keyway freely. A peak 

load of 1.14 kips (5.07 kN) occurred as the bolt was bent straight out by the cable. The force 

versus time plot is shown in Figure 83. Pre- and post-test photographs are shown in Figure 84. 

Sequential photographs are shown in Figure 85. 
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Figure 83. Force-Time Data, Test No. HTCUB-46 
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Figure 84. Pre-Test and Post-Test Photographs, Test No. HTCUB-46 

  
  Time = 0 sec     Time = 0.324 sec 

 

  
  Time = 0.344 sec   Time = 0.352 sec, Release 

 

Figure 85. Sequential Photographs, Test No. HTCUB-46 
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7.1.10 Test No. HTCUB-47 (A449 KB, Small, Lateral) 

For test no. HTCUB-47, the cable pulled on the ASTM A449 keyway bolt at an angle of 

90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The small oversized keyway 

was used for this test. As the cable began to pull on the bolt, the button head was caught on the 

bottom of the keyway. A peak load of 5.05 kips (22.5 kN) occurred while the button head was 

caught on the bottom of the keyway, as the cable continued to pull on the bolt. Finally, the button 

head slipped off, and the cable released as it straightened out the bolt. The force versus time plot 

is shown in Figure 86. Pre- and post-test photographs are shown in Figure 87. Sequential 

photographs are shown in Figure 88. 
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Figure 86. Force-Time Data, Test No. HTCUB-47 
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Figure 87. Pre-Test and Post-Test Photographs, Test No. HTCUB-47 

  
  Time = 0 sec     Time = 0.162 sec 

 

  
  Time = 0.182 sec   Time = 0.192 sec, Release 

 

Figure 88. Sequential Photographs, Test No. HTCUB-47 
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7.1.11 Test No. HTCUB-48 (A449 KB, Large, Lateral) 

For test no. HTCUB-48, the cable pulled on the ASTM A449 keyway bolt at an angle of 

90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The large oversized keyway 

was used for this test. As the cable began to pull on the bolt, the button head was not caught or 

snagged on the bottom or side of the keyway but released through the keyway freely. A peak 

load of 840 lb (3.74 kN) occurred as the bolt was bent straight out by the cable. The force versus 

time plot is shown in Figure 89. Pre- and post-test photographs are shown in Figure 90. 

Sequential photographs are shown in Figure 91. 
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Figure 89. Force-Time Data, Test No. HTCUB-48 
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Figure 90. Pre-Test and Post-Test Photographs, Test No. HTCUB-48 

  
  Time = 0 sec     Time = 0.152 sec 

 

  
  Time = 0.180 sec   Time = 0.188 sec, Release 

 

Figure 91. Sequential Photographs, Test No. HTCUB-48 
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7.1.12 Test No. HTCUB-49 (A449 KB, Large, Lateral) 

For test no. HTCUB-49, the cable pulled on the ASTM A449 keyway bolt at an angle of 

90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The large oversized keyway 

was used for this test. As the cable began to pull on the bolt, the button head was not caught or 

snagged on the bottom or side of the keyway but released through the keyway freely. A peak 

load of 1.22 kips (5.43 kN) occurred as the bolt was bent straight out by the cable. The force 

versus time plot is shown in Figure 92. Pre- and post-test photographs are shown in Figure 93. 

Sequential photographs are shown in Figure 94. 
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Figure 92. Force-Time Data, Test No. HTCUB-49 
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Figure 93. Pre-Test and Post-Test Photographs, Test No. HTCUB-49 

  
  Time = 0 sec     Time = 0.160 sec 

 

  
  Time = 0.196 sec   Time = 0.204 sec, Release 

 

Figure 94. Sequential Photographs, Test No. HTCUB-49 
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7.1.13 Test No. HTCUB-50 (C1018 KB, Small, Lateral) 

For test no. HTCUB-50, the cable pulled on the AISI C1018 keyway bolt at an angle of 

90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The small oversized keyway 

was used for this test. As the cable began to pull on the bolt, the button head was not caught or 

snagged on the bottom or side of the keyway but released through the keyway freely. A peak 

load of 531 lb (2.36 kN) occurred as the bolt was bent straight out by the cable. The force versus 

time plot is shown in Figure 95. Pre- and post-test photographs are shown in Figure 96. 

Sequential photographs are shown in Figure 97. 
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Figure 95. Force-Time Data, Test No. HTCUB-50 
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Figure 96. Pre-Test and Post-Test Photographs, Test No. HTCUB-50 

  
  Time = 0 sec     Time = 0.120 sec 

 

  
  Time = 0.140 sec   Time = 0.148 sec, Release 

 

Figure 97. Sequential Photographs, Test No. HTCUB-50 
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7.1.14 Test No. HTCUB-51 (C1018 KB, Small, Lateral) 

For test no. HTCUB-51, the cable pulled on the AISI C1018 keyway bolt at an angle of 

90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The small oversized keyway 

was used for this test. As the cable began to pull on the bolt, the button head was not caught or 

snagged on the bottom or side of the keyway but released through the keyway freely. A peak 

load of 538 lb (2.39 kN) occurred as the bolt was bent straight out by the cable. The force versus 

time plot is shown in Figure 98. Pre- and post-test photographs are shown in Figure 99. 

Sequential photographs are shown in Figure 100. 
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Figure 98. Force-Time Data, Test No. HTCUB-51 
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Figure 99. Pre-Test and Post-Test Photographs, Test No. HTCUB-51 

  
  Time = 0 sec     Time = 0.176 sec 

 

  
  Time = 0.204 sec   Time = 0.212 sec, Release 

 

Figure 100. Sequential Photographs, Test No. HTCUB-51 
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7.1.15 Test No. HTCUB-52 (C1018 KB, Large, Lateral) 

For test no. HTCUB-52, the cable pulled on the AISI C1018 keyway bolt at an angle of 

90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The large oversized keyway 

was used for this test. As the cable began to pull on the bolt, the button head was not caught or 

snagged on the bottom or side of the keyway but released through the keyway freely. A peak 

load of 544 lb (2.42 kN) occurred as the bolt was bent straight out by the cable. The force versus 

time plot is shown in Figure 101. Pre- and post-test photographs are shown in Figure 102. 

Sequential photographs are shown in Figure 103. 
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Figure 101. Force-Time Data, Test No. HTCUB-52 
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Figure 102. Pre-Test and Post-Test Photographs, Test No. HTCUB-52 

  
  Time = 0 sec     Time = 0.088 sec 

 

  
  Time = 0.116 sec   Time = 0.124 sec, Release 

 

Figure 103. Sequential Photographs, Test No. HTCUB-52 
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7.1.16 Test No. HTCUB-53 (C1018 KB, Large, Lateral) 

For test no. HTCUB-53, the cable pulled on the AISI C1018 keyway bolt at an angle of 

90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The large oversized keyway 

was used for this test. As the cable began to pull on the bolt, the button head was not caught or 

snagged on the bottom or side of the keyway, but released through the keyway freely. A peak 

load of 1.53 kips (6.81 kN) occurred as the bolt was bent straight out by the cable. The force 

versus time plot is shown in Figure 104. Pre- and post-test photographs are shown in Figure 105. 

Sequential photographs are shown in Figure 106. 
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Figure 104. Force-Time Data, Test No. HTCUB-53 
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Figure 105. Pre-Test and Post-Test Photographs, Test No. HTCUB-53 

  
  Time = 0 sec     Time = 0.086 sec 

 

  
  Time = 0.124 sec   Time = 0.132 sec, Release 

 

Figure 106. Sequential Photographs, Test No. HTCUB-53 
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7.1.17 Test No. HTCUB-54 (C1018 Mod. KB, Large, Lateral) 

For test no. HTCUB-54, the cable pulled on the AISI C1018, modified keyway bolt at an 

angle of 90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. 

The keyway bolt was attached to the front flange with one grade 8 nut. The large oversized 

keyway was used for this test. As the cable began to pull on the bolt—before the bolt began to 

bend—it rotated about its fixed end so that the end of the shaft, just before the button head, came 

to rest against the side of the keyway. A peak load of 2.90 kips (12.9 kN) occurred as the cable 

continued to pull on the bolt. Finally, the button head slipped out, and the cable was released as 

the bolt was straightened. The force versus time plot is shown in Figure 107. Pre- and post-test 

photographs are shown in Figure 108. Sequential photographs are shown in Figure 109. 
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Figure 107. Force-Time Data, Test No. HTCUB-54 
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Figure 108. Pre-Test and Post-Test Photographs, Test No. HTCUB-54 

  
  Time = 0 sec     Time = 0.214 sec 

 

  
  Time = 0.218 sec   Time = 0.226 sec, Release 

 

Figure 109. Sequential Photographs, Test No. HTCUB-54 
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7.1.18 Test No. HTCUB-55 (C1018 Mod. KB, Large, Lateral) 

For test no. HTCUB-55, the cable pulled on the AISI C1018, modified keyway bolt at an 

angle of 90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. 

The keyway bolt was attached to the front flange with one grade 8 nut. The large oversized 

keyway was used for this test. As the cable began to pull on the bolt, the button head was not 

caught or snagged on the bottom or side of the keyway but released through the keyway freely. A 

peak load of 798 lb (3.55 kN) occurred as the bolt was bent straight out by the cable. The force 

versus time plot is shown in Figure 110. Pre- and post-test photographs are shown in Figure 111. 

Sequential photographs are shown in Figure 112. 
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Figure 110. Force-Time Data, Test No. HTCUB-55 
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Figure 111. Pre-Test and Post-Test Photographs, Test No. HTCUB-55 

  
  Time = 0 sec     Time = 0.140 sec 

 

  
  Time = 0.160 sec   Time = 0.176 sec, Release 

 

Figure 112. Sequential Photographs, Test No. HTCUB-55 
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7.1.19 Test No. HTCUB-56 (C1018 Mod. KB, Large, Vertical) 

For test no. HTCUB-56, the cable pulled on the AISI C1018, modified keyway bolt at an 

angle of 0 degrees, parallel to the front face of the flange, thus imparting a vertical load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The large oversized keyway 

was used for this test. As the cable began to pull on the bolt, the button head was caught on the 

side of the keyway. A peak load of 1.71 kips (7.61 kN) occurred as the button head rubbed 

against the back of the flange, while the bolt was being pulled upward. Finally, the button head 

slipped off the side of the keyway and released through it. A smaller button snag load of 671 lb 

(2.98 kN) occurred after the button head cleared the keyway. The force versus time plot is shown 

in Figure 113. Pre- and post-test photographs are shown in Figure 114. Sequential photographs 

are shown in Figure 115. 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

142 

 
Figure 113. Force-Time Data, Test No. HTCUB-56 
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Figure 114. Pre-Test and Post-Test Photographs, Test No. HTCUB-56 

  
  Time = 0 sec     Time = 0.098 sec 

 

  
  Time = 0.122 sec   Time = 0.140 sec, Release 

 

Figure 115. Sequential Photographs, Test No. HTCUB-56 
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7.1.20 Test No. HTCUB-57 (C1018 Mod. KB, Large, Vertical) 

For test no. HTCUB-57, the cable pulled on the AISI C1018, modified keyway bolt at an 

angle of 0 degrees, parallel to the front face of the flange, thus imparting a vertical load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The large oversized keyway 

was used for this test. As the cable began to pull on the bolt, the button head was caught on the 

side of the keyway. A peak load of 1.17 kips (5.20 kN) occurred as the button head rubbed 

against the back of the flange, while the bolt was being pulled upward. Finally, the button head 

slipped off the side of the keyway and released through it. A smaller button snag load of 704 lb 

(3.13 kN) occurred after the button head cleared the keyway. The force versus time plot is shown 

in Figure 116. Pre- and post-test photographs are shown in Figure 117. Sequential photographs 

are shown in Figure 118. 
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Figure 116. Force-Time Data, Test No. HTCUB-57 
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Figure 117. Pre-Test and Post-Test Photographs, Test No. HTCUB-57 

  
  Time = 0 sec     Time = 0.174 sec 

 

  
  Time = 0.184 sec   Time = 0.192 sec, Release 

 

Figure 118. Sequential Photographs, Test No. HTCUB-57 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

147 

7.2 Discussion 

Twenty dynamic component tests were performed in the first round, which focused on 

reducing both the lateral and vertical release loads. To that end, these tests were successful. This 

goal was accomplished by making the keyways larger as well as by reducing or eliminating the 

contact surface area between the button head of the bolt and the backside of the flange. 

Due to the 1/16-in. (2-mm) design overlap between the button head of the keyway bolts 

and the bottom of the small oversized keyway, the lateral release loads of the keyway bolts were 

expected to be much higher when placed in the small oversized keyway versus the large 

oversized keyway. In general, this was not the case. In three out of four lateral pull tests on 

keyway bolts placed in small oversized keyways, the button head slipped out of the keyway 

freely, demonstrating that the minimum overlap of 1/16 in. (2 mm) was ineffective. As such, the 

keyway bolts would not be able to achieve the target lateral release load of 6.00 kips (26.7 kN) 

when placed in either of the small or large oversized keyways. 

When pulled vertically, both oversized keyways were expected to allow the button heads 

of the keyway bolts to properly release without scraping against the back side of the flange. 

When a free release behavior was observed, the vertical release loads were much lower than 1.18 

kips (5.25 kN), as observed for the A449 keyway bolts in the dual width keyways. However, in 

the case of test nos. HTCUB-56 and HTCUB-57, the button head of the modified keyway bolts 

drifted to the side of the keyway prior to loading. As a result, when the modified keyway bolts 

were pulled vertically, the button heads scraped against the back side of the front flange but 

alongside the edge of the keyway, causing vertical release loads as high as 1.71 kips (7.61 kN), 

which was undesirable. 

After careful consideration based on group discussions in several design meetings, none 

of the Round 1 designs were believed to provide the ideal release behavior. The lateral release 
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loads were too low and the vertical release loads were too high. Thus, oversized keyways were 

not used with the second round of keyway bolt modifications, as described in Chapters 8 and 9. 
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8 OVERVIEW OF IMPROVED KEYWAY BOLTS—ROUND 2 

8.1 Introduction 

After the first round of tests, some decisions were made about the future of the keyway 

bolts. Based on these discussions, it was determined that no further tests would be performed on 

keyway bolts installed in small or large oversized keyways. In tests to follow, some variation of 

the dual-width keyway would be used. The focus of the design effort shifted toward the keyway 

bolt itself. More specifically, it was highly desirable to achieve cable release at a lower vertical 

load, while maintaining an adequate lateral release load. To accomplish this goal, it would be 

necessary to take a closer look at the keyway bolts. 

8.2 Extended Moment Arm Concepts 

One way to decrease the vertical release of the cable would be to extend the moment arm 

of the applied force and the critical bending location. This concept can also be applied to the 

keyway bolts, as shown in Figure 119. The moment arm in Figure 119b is from the center of the 

cable (where the vertical force can be assumed to act) to the center of the outermost point of the 

bolt (where the maximum moment will be). 

 
  a) Cantilever Beam     b) Keyway Bolt 

 

Figure 119. Moment Arm Concept—(a) Cantilever Beam and (b) Keyway Bolt 
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An equation was derived for the maximum vertical load that could be resisted by the 

keyway bolt. A pure plastic bending condition was assumed. The bending moment resistance for 

a pure plastic bending condition is given below. 

       

  Where  MP = plastic moment 

    Z = plastic section modulus 

    σy = yield strength of the bolt 

 

For a circular cross-section, 

  
  

 
 

 Where  d = diameter of the cross-section 

Under dynamic loading conditions, a dynamic magnification factor is often used to 

account for strain rate effects. For the derivation of these equations, a dynamic magnification 

factor of 1.5 was assumed. This factor is empirical, and it is based on observations of steel 

guardrail or bridge rail posts placed in rigid foundations and subjected to a cantilevered load 

condition in bending [12]. To solve for the maximum vertical load that could be resisted by the 

keyway bolt, the applied moment was equated to the plastic bending resistance under dynamic 

loading conditions. 

          

   
     

 
 

      

 
 

     (
  

 
)

 
 

    

  
   (8.1) 

   Where  Pv = vertical release load of bolt 

     x = moment arm (see Figure 119b) 
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The length of the moment arm, as defined in Figure 119b, was 0.56 in. (14 mm), and the 

diameter of the bolt was ¼ in. (6 mm). Equation 4.1 provides a maximum vertical release load of 

642 lb (2.86 kN) and 377 lb (1.68 kN) for the ASTM A449 and AISI C1018 bolts, respectively. 

Equation 4.1 assumes that there is free release through the keyway without button head 

scraping on the back side surface of the front flange. It also does not account for the cable 

snagging on the button, or “button snag”. Button snag was observed in the first round of keyway 

bolt component tests. It would occur near the end of the release, after the button head had cleared 

the keyway but as the cable became momentarily snagged on the button. It was clearly 

distinguishable in the high-speed video footage and was characterized by a force spike in the 

load cell data. In most cases where button snag was distinguishable in the load cell data, there 

was a dip in the measured force just before an abrupt spike. An example of this behavior is 

shown in Figure 120. The load cell force peaked and began to dip around 0.15 sec, just before 

spiking due to button snag. 
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Figure 120. Button Snag in the Load Cell Data 

After considering the actual conditions of the cable barrier, it was understood that the 

cable would not be wrapped (i.e., looped) around the cable-to-post attachment in the same 

manner as used in the component tests. Thus, it was assumed that the button snag phenomenon 

was unique to the component tests and therefore could be disregarded. If the button snag load 

was clearly distinguishable, it was not considered to be the critical peak load; since, it was not 

expected to occur in the actual cable barrier system. 

Equation 8.1 served as a starting point for determining the required moment arm to 

reduce the vertical release load to 225 lb (1.00 kN)—the target set in the initial design meetings 
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and as discussed in Chapter 4. Accordingly, the required moment arms for the keyway bolts 

would be 1.60 in. (41 mm) for the ASTM A449 steel, and 0.938 in. (24 mm) for the AISI C1018 

bolts, in order to keep the same curved shape, as shown in Figure 121. 

 
a) Baseline   b) AISI C1018    c) ASTM A449 

x = 0.56 in. (14 mm)  x = 0.938 in. (24 mm)   x = 1.60 in. (41 mm) 

 

Figure 121. Extended-Moment-Arm Keyway Bolts—(a) Baseline, (b) AISI C1018, and (c) 

ASTM A449 

The problem with the extended moment arm concepts was that there was so much more 

free space where the cables could float. For quality control reasons, it was preferable to have the 

cable confined to a smaller space so that the cable height would be consistent. One potential 

solution would be to bend the bolts in a way in which the cable’s space would be more confined, 

while at the same time providing a long moment arm. Some of these concepts were actually 

drawn up, but the prototypes would be rather ridiculous and result in uneconomical bolts, as 

shown in Figure 122. The bolt in Figure 122a might have worked, but it provides an opportunity 

for installers to place the cable in the lower space. To eliminate installation error, a bolt concept 

with confined space was configured, as shown in Figure 122b. These two concepts were deemed 

too complicated. Thus, extended moment-arm concepts were not pursued any further. 
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(a) Concept 1    (b) Concept 2 

 

Figure 122. Extended Moment-Arm Concepts—(a) Concept 1 and (b) Concept 2 

8.3 Extended Keyway Bolts 

The oversized keyway tests showed that when button head scraping was eliminated, the 

vertical release loads were drastically reduced. The main reason for the scraping with the original 

keyway bolt installed in the dual-width keyway was the button head’s close proximity to the 

backside surface of the post’s front flange. This button head scraping could be reduced or 

eliminated with an extension added to the keyway bolt so that the button head was seated farther 

away from the inside of the front flange. 

8.3.1 Computer Simulations 

Before proceeding with dynamic component testing, the extended keyway bolt concept 

was investigated through the use of computer simulations. As part of a previous effort, MwRSF 

researchers developed an LS-DYNA computer simulation model of a vertical pull test on an 

ASTM A449 keyway bolt placed in a dual-width keyway. The model was based on test no. 

HTCUB-32, a dynamic component test (similar to the tests described in Chapter 6) from a 

previous cable-to-post attachment testing program [71]. The model is shown in Figure 123. For 
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details regarding the development and verification of the model, refer to the MwRSF research 

report [74]. 

 
Figure 123. Baseline Keyway Bolt Model 

Solid elements were used to model the bolt, nut, button head, and S3x5.7 (S76x8.5) post 

section. The ¼-in. (6-mm) diameter keyway bolt was modeled with 59 elements in the cross-

section, each having an average side length of 0.039 in. (1.0 mm). The elements in the button 

head were similar in size to those used for the bolt. A piecewise linear elastic-plastic material 

model was used to define properties of the ASTM A449 steel of the bolt and button head. A 

different piecewise linear elastic-plastic material model was used to define properties of the 

ASTM A36 steel used for the S3x5.7 (S76x8.5) post section. The nut was defined with a rigid 
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material model. All of the solid elements were single-point integrated. The elements of the bolt 

threads were given a pre-defined stress to simulate the bolt pre-tension. The friction coefficient 

between the bolt, the button head, and the post was 0.13. 

The ¾-in. (19-mm) diameter 7x19 wire rope (cable) was modeled with Belytschko-

Schwer beam elements, and the *MAT_MOMENT_CURVATURE_BEAM material model in 

LS-DYNA. Bending, torsional, and tensile stiffness were approximated. The friction coefficient 

between the wire rope and the bolt was 0.10. 

A load was applied to the end of the cable, with the load-time history of the applied load 

taken directly from the load cell data of test no. HTCUB-32. Fracture resistance, bolt 

deformation times, onset of visible plastic deformation, and cable motion observed from high-

speed film were compared to simulation results, and material properties were updated until the 

simulation results were within an acceptable margin of error. This calibrated system was then 

used for the baseline model. 

In order to model the extended keyway bolt concept, the shaft of the baseline keyway bolt 

was extended by ¼ in. (6 mm), as shown in Figure 124. Everything else was exactly the same as 

the baseline model. As a result of the extension, there was a significant reduction in the 

maximum loads, as shown in Figure 125. This result was observed because the button head 

scraping was eliminated in the extended keyway bolt model, resulting in a much quicker release 

of the button head through the keyway, as shown in Figure 126. 
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  a) Baseline     b) Extended 

 

Figure 124. Keyway Bolt Models—(a) Baseline and (b) Extended 

 
Figure 125. LS-DYNA Model Cable-Bolt Vertical Forces 
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 Time = 38 ms  Time = 58 ms  Time = 78 ms            Time = 100 ms 

 

a) Baseline Model 

 

                               
 Time = 38 ms  Time = 58 ms  Time = 78 ms            Time = 100 ms 

 

b) Extended Keyway Bolt Model 

 

Figure 126. Simulations—(a) Baseline Model and (b) Extended Keyway Bolt Model 

According to the LS-DYNA models, a ¼-in. (6-mm) extension of the shaft of the keyway 

bolt showed a propensity to reduce the maximum vertical release load from 1.1 kips (4.9 kN) to 
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0.5 kips (2.2 kN). Based on this limited simulation effort, it was believed that the next step 

should be component testing. 

8.3.2 Prototype Extended Keyway Bolts 

The acquisition of new bolts that were fabricated to be just ¼ in. (6 mm) longer would 

have been costly and require considerable time. Instead, extended keyway bolts were fabricated 

using the AISI C1018 keyway bolts that were already on hand. To make these prototypes, the 

button head was cut off, and a ¼-in. (6-mm) piece of round steel bar was welded to the cut 

keyway bolt. Then, the button head was welded to the other end of the short segment. Details for 

the prototype are shown in Figure 127. 

 

 
 

Figure 127. Extended Keyway Bolt Prototype 

Two different keyways were tested in combination with the extended keyway bolts—the 

original dual-width keyway and the modified dual-width keyway. The narrow part of the 
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modified dual-width keyway was 1/8 in. (3 mm) deeper than that of the original dual-width 

keyway, as shown in Figure 128. The increased depth of the lower slot of the modified dual-

width keyway was expected to increase the likelihood that the button head would become caught 

when the keyway bolt was pulled laterally. 

     
 

   a) Original     b) Modified 

 

Figure 128. Dual-Width Keyways—(a) Original and (b) Modified 

8.3.3 Dynamic Bogie Tests 

The extended keyway bolts were tested and evaluated using the same dynamic bogie 

testing procedures described in Chapter 6. Different load orientations were used in order to 

determine the vertical and lateral release loads for each concept under dynamic loading 

conditions. The test results for the extended keyway bolts are presented in Chapter 9. 
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9 DYNAMIC COMPONENT TESTS—EXTENDED KEYWAY BOLTS, ROUND 2 

9.1 Results 

There were two rounds of design modifications on the keyway bolts, followed by 

component testing and evaluation for each round. Twenty dynamic component tests (test nos. 

HTCUB-38 through HTCUB-57) were performed in the first round, as described in Chapter 7. 

Eight more dynamic component tests (test nos. HTCUB-58 through HTCUB-65) were performed 

in the second round, as discussed in this chapter. Each individual concept was tested twice in its 

vertical orientation and twice in its lateral orientation in order to find the strength of the 

connection in those directions. For the sake of convenience, the consolidated drawing set for 

both rounds of keyway bolt dynamic component tests was shown in Figures 49 through 58, 

located in Chapter 7. A summary of the test matrix and results for the second round of dynamic 

components tests is provided in Table 6. 
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Table 6. Summary of Dynamic Component Testing of Extended Keyway Bolts, Round 2 

Test No. 
Load 

Direction 
Test Article Material Keyway Slot 

Release 

Load, 

kips 

(kN) 

Test Results 

HTCUB-58 Vertical 
Extended 

Keyway Bolt, a4 

AISI 

C1018 

Original 

dual-width, E 

0.38 

(1.7) 

Free release through keyway, button snag 

load = 0.46 kips (2.0 kN) 

HTCUB-59 Vertical 
Extended 

Keyway Bolt, a4 

AISI 

C1018 

Original 

dual-width, E 

0.44 

(2.0) 

Free release through keyway, button snag 

load = 0.39 kips (1.7 kN) 

HTCUB-60 Lateral 
Extended 

Keyway Bolt, a4 

AISI 

C1018 

Original 

dual-width, E 

3.53 

(15.7) 

Button caught in narrow part of keyway, 

released through keyway 

HTCUB-61 Lateral 
Extended 

Keyway Bolt, a4 

AISI 

C1018 

Original 

dual-width, E 

1.75 

(7.78) 

Button caught in narrow part of keyway, 

released through keyway 

HTCUB-62 Lateral 
Extended 

Keyway Bolt, a4 

AISI 

C1018 

Modified 

dual-width, F 

5.71 

(25.4) 

Button caught in narrow part of keyway, 

fracture through weld of extension 

HTCUB-63 Lateral 
Extended 

Keyway Bolt, a4 

AISI 

C1018 

Modified 

dual-width, F 

4.62 

(20.6) 

Button caught in narrow part of keyway, 

fracture through weld of extension 

HTCUB-64 Vertical 
Extended 

Keyway Bolt, a4 

AISI 

C1018 

Modified 

dual-width, F 

0.59 

(2.6) 

Free release through keyway, button snag 

load = 0.33 kips (1.5 kN), crack in weld 

HTCUB-65 Vertical 
Extended 

Keyway Bolt, a4 

AISI 

C1018 

Modified 

dual-width, F 

0.39 

(1.7) 

Free release through keyway, button snag 

load = 0.44 kips (2.0 kN), crack in weld 
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9.1.1 Test No. HTCUB-58 (C1018 Ext. KB, Original, Vertical) 

For test no. HTCUB-58, the cable pulled on the AISI C1018, extended keyway bolt at an 

angle of 0 degrees, parallel to the face of the flange, thus imparting a vertical load. The keyway 

bolt was attached to the front flange with one grade 8 nut. The original dual-width keyway was 

used for this test. As the cable began to pull on the bolt, the bolt was bent upward. The button 

head released through the keyway freely with a maximum release load of 380 lb (1.69 kN). A 

peak load of 455 lb (2.02 kN) occurred as the cable became snagged on the button head, after the 

button head had already cleared the keyway. The force versus time plot is shown in Figure 129. 

Pre- and post-test photographs are shown in Figure 130. Sequential photographs are shown in 

Figure 131. 
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Figure 129. Force-Time Data, Test No. HTCUB-58 
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Figure 130. Pre-Test and Post-Test Photographs, Test No. HTCUB-58 

  
  Time = 0 sec     Time = 0.124 sec 

 

  
  Time = 0.134 sec   Time = 0.142 sec, Release 

 

Figure 131. Sequential Photographs, Test No. HTCUB-58 
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9.1.2 Test No. HTCUB-59 (C1018 Ext. KB, Original, Vertical) 

For test no. HTCUB-59, the cable pulled on the AISI C1018, extended keyway bolt at an 

angle of 0 degrees, parallel to the front face of the flange, thus imparting a vertical load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The original dual-width 

keyway was used for this test. As the cable began to pull on the bolt, the bolt was bent upward. 

The button head released out of the keyway freely with a maximum release load of 440 lb (1.96 

kN). A smaller button snag load of 387 lb (1.72 kN) occurred after the button head had already 

cleared the keyway. The force versus time plot is shown in Figure 132. Pre- and post-test 

photographs are shown in Figure 133. Sequential photographs are shown in Figure 134. 
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Figure 132. Force-Time Data, Test No. HTCUB-59 
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Figure 133. Pre-Test and Post-Test Photographs, Test No. HTCUB-59 

  
  Time = 0 sec     Time = 0.102 sec 

 

  
  Time = 0.112 sec   Time = 0.120 sec, Release 

 

Figure 134. Sequential Photographs, Test No. HTCUB-59 
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9.1.3 Test No. HTCUB-60 (C1018 Ext. KB, Original, Lateral) 

For test no. HTCUB-60, the cable pulled on the AISI C1018, extended keyway bolt at an 

angle of 90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. 

The keyway bolt was attached to the front flange with one grade 8 nut. The original dual-width 

keyway was used for this test. As the cable pulled on the bolt, the button head was caught in the 

narrow part of the keyway. The cable continued to pull on the bolt until the button head slipped 

out of the keyway with a release load of 3.53 kips (15.7 kN). The force versus time plot is shown 

in Figure 135. Pre- and post-test photographs are shown in Figure 136. Sequential photographs 

are shown in Figure 137. 
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Figure 135. Force-Time Data, Test No. HTCUB-60 
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Figure 136. Pre-Test and Post-Test Photographs, Test No. HTCUB-60 

  
  Time = 0 sec     Time = 0.200 sec 

 

  
  Time = 0.206 sec   Time = 0.210 sec, Release 

 

Figure 137. Sequential Photographs, Test No. HTCUB-60 
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9.1.4 Test No. HTCUB-61 (C1018 Ext. KB, Original, Lateral) 

For test no. HTCUB-61, the cable pulled on the AISI C1018, extended keyway bolt at an 

angle of 90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. 

The keyway bolt was attached to the front flange with one grade 8 nut. The original dual-width 

keyway was used for this test. As the cable pulled on the bolt, the button head was caught in the 

narrow part of the keyway. The cable continued to pull on the bolt until the button head slipped 

out of the keyway with a release load of 1.75 kips (7.78 kN). The force versus time plot is shown 

in Figure 138. Pre- and post-test photographs are shown in Figure 139. Sequential photographs 

are shown in Figure 140. 
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Figure 138. Force-Time Data, Test No. HTCUB-61 
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Figure 139. Pre-Test and Post-Test Photographs, Test No. HTCUB-61 

  
  Time = 0 sec     Time = 0.312 sec 

 

  
  Time = 0.320 sec   Time = 0.328 sec, Release 

 

Figure 140. Sequential Photographs, Test No. HTCUB-61 
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9.1.5 Test No. HTCUB-62 (C1018 Ext. KB, Modified, Lateral) 

For test no. HTCUB-62, the cable pulled on the AISI C1018, extended keyway bolt at an 

angle of 90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. 

The keyway bolt was attached to the front flange with one grade 8 nut. The modified dual-width 

keyway was used for this test. As the cable pulled on the bolt, the button head was caught in the 

narrow part of the keyway. The cable continued to pull on the bolt until the bolt fractured 

through the weld of the ¼-in. (6-mm) extension with a peak load of 5.71 kips (25.4 kN). The 

force versus time plot is shown in Figure 141. Pre- and post-test photographs are shown in 

Figure 142. Sequential photographs are shown in Figure 143. 
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Figure 141. Force-Time Data, Test No. HTCUB-62 
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Figure 142. Pre-Test and Post-Test Photographs, Test No. HTCUB-62 

  
  Time = 0 sec     Time = 0.254 sec 

 

  
  Time = 0.258 sec   Time = 0.262 sec, Release 

 

Figure 143. Sequential Photographs, Test No. HTCUB-62 
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9.1.6 Test No. HTCUB-63 (C1018 Ext. KB, Modified, Lateral) 

For test no. HTCUB-63, the cable pulled on the AISI C1018, extended keyway bolt at an 

angle of 90 degrees, perpendicular to the front face of the flange, thus imparting a lateral load. 

The keyway bolt was attached to the front flange with one grade 8 nut. The modified dual-width 

keyway was used for this test. As the cable pulled on the bolt, the button head was caught in the 

narrow part of the keyway. The cable continued to pull on the bolt until the bolt fractured 

through the weld of the ¼-in. (6-mm) extension with a peak load of 4.62 kips (20.6 kN). The 

force versus time plot is shown in Figure 144. Pre- and post-test photographs are shown in 

Figure 145. Sequential photographs are shown in Figure 146. 
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Figure 144. Force-Time Data, Test No. HTCUB-63 
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Figure 145. Pre-Test and Post-Test Photographs, Test No. HTCUB-63 

  
  Time = 0 sec     Time = 0.296 sec 

 

  
  Time = 0.300 sec   Time = 0.304 sec, Release 

 

Figure 146. Sequential Photographs, Test No. HTCUB-63 
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9.1.7 Test No. HTCUB-64 (C1018 Ext. KB, Modified, Vertical) 

For test no. HTCUB-64, the cable pulled on the AISI C1018, extended keyway bolt at an 

angle of 0 degrees, parallel to the front face of the flange, thus imparting a vertical load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The modified dual-width 

keyway was used for this test. As the cable pulled on the bolt, the bolt was bent upward and out 

of the keyway freely with a maximum release load of 585 lb (2.60 kN). After the button head 

cleared the keyway, the cable became snagged on the button head. During the course of the test, 

a crack developed in the weld of the extension on the bolt, but the weld did not fracture 

completely. The load from the cable snagging on the button was 333 lb (1.48 kN). The force 

versus time plot is shown in Figure 147. Pre- and post-test photographs are shown in Figure 148. 

Sequential photographs are shown in Figure 149. 
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Figure 147. Force-Time Data, Test No. HTCUB-64 
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Figure 148. Pre-Test and Post-Test Photographs, Test No. HTCUB-64 

  
  Time = 0 sec     Time = 0.110 sec 

 

  
  Time 0.118 sec   Time = 0.126 sec, Release 

 

Figure 149. Sequential Photographs, Test No. HTCUB-64 
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9.1.8 Test No. HTCUB-65 (C1018 Ext. KB, Modified, Vertical) 

For test no. HTCUB-65, the cable pulled on the AISI C1018, extended keyway bolt at an 

angle of 0 degrees, parallel to the front face of the flange, thus imparting a vertical load. The 

keyway bolt was attached to the front flange with one grade 8 nut. The modified dual-width 

keyway was used for this test. As the cable pulled on the bolt, the bolt was bent upward and out 

of the keyway freely with a maximum release load of 387 lb (1.72 kN). A peak load of 442 lb 

(1.97 kN) occurred after the button head cleared the keyway but as the cable became snagged on 

the button head. During the course of the test, a crack developed in the weld of the extension on 

the bolt, but the weld did not fracture completely. The force versus time plot is shown in Figure 

150. No pre-test photograph was taken. The post-test photograph is shown in Figure 151. 

Sequential photographs are shown in Figure 152. 
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Figure 150. Force-Time Data, Test No. HTCUB-65 
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Figure 151. Post-Test Photograph, Test No. HTCUB-65 

  
  Time = 0 sec     Time = 0.152 sec 

 

  
  Time = 0.160 sec   Time = 0.168 sec, Release 

 

Figure 152. Sequential Photographs, Test No. HTCUB-65 
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9.2 Discussion 

The extended keyway bolts performed well when combined with the modified dual-width 

keyway. When pulled vertically, the button head released through the keyway freely. When 

pulled laterally, the button head became caught in the narrow part of the keyway, and the 

prototype bolt fractured through the weld of the extension. 

The average vertical release load of the extended keyway bolts placed in the modified 

dual-width keyway was 486 lb (2.16 kN), and the average lateral release load was 5.17 kips (23.0 

kN). During testing, several prototypes fractured through the weld of the extension—a weak spot 

that would not exist in the part if it were fabricated from one solid piece. However, it was 

believed that the lateral release of an extended keyway bolt (specially fabricated from one 

continuous round bar) would be higher. For lateral component test nos. HTCUB-23 and 

HTCUB-28 on the AISI C1018 keyway bolts from the previous testing program [71], the button 

heads became caught in the narrow part of the keyways as observed in test nos. HTCUB-62 and 

HTCUB-63. Subsequently, the bolts fractured through the threads with an average load of 6.47 

kips (28.8 kN). Therefore, it was assumed that properly manufactured extended keyway bolts 

would also fracture through their threads with a lateral release load of 6.47 kips (28.8 kN). 

The C1018 extended keyway bolts reduced the vertical release load from 1.18 kips (5.25 

kN) to 486 lb (2.16 kN), although an even lower vertical release load was desired. Extending the 

moment arm was deemed impractical. A reduction in bolt diameter would decrease the bending 

strength and the vertical release load. Unfortunately, the tensile strength would also be 

decreased, which would reduce the lateral release load. Rather than pursue more keyway bolt 

concepts, new cable-to-post concepts were developed and are described in detail within Chapter 

10. 
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10 OVERVIEW OF CRIMP-IN-PLACE TABBED BRACKETS, ROUND 1 

10.1 Introduction 

Following the investigation of the extended keyway bolts, it was deemed necessary to 

continue the effort to develop new cable-to-post attachments for use with the high-tension, cable 

barrier system. The extended keyway bolts seemed to be a good option, but it seemed prudent to 

cultivate multiple options, especially since the extended keyway bolts did not satisfy the initial 

target for the vertical release load of 225 lb (1.00 kN) or less. Toward the end of the investigative 

effort to modify the keyway bolts—even as dynamic component tests were in the queue—new 

cable-to-post attachment prototypes were being conceived. From the ongoing brainstorming of 

concepts, tabbed brackets, fabricated from sheet steel, were proposed. 

There were two main variations of the tabbed bracket configurations, crimp-in-place and 

bolted, which referenced the method of attachment to the post. For both variations, the head of 

the bracket was designed to catch in the narrow part of a keyway when pulled laterally and 

release through the wider part of a keyway when pulled vertically. In this way, the tabbed 

brackets were very similar to the keyway bolts. Their main advantage over the keyway bolts was 

the “tune-ability” of their lateral and vertical release strengths. Cross-sectional properties, such 

as tensile area and plastic modulus, were easier to modify for the designer. 

10.1.1 Dynamic Bogie Tests 

All prototype designs noted in this chapter were later tested according to the dynamic 

bogie testing setup and procedures described in Chapter 6. Different load orientations were used 

in order to determine the vertical and lateral release loads for each concept under dynamic 

loading conditions. 
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10.1.2 Tabbed Bracket Basics 

The tabbed brackets were to be fabricated from hot-rolled ASTM A1011 HSLA Grade 50 

sheet steel. Similar to the keyway bolts, the tabbed brackets would utilize a type of dual-width 

keyway. Two variations of the tabbed brackets were configured—crimp-in-place and bolted. An 

example of each type of tabbed bracket is shown in Figure 153. 

    
 

  a) Crimp-In-Place     b) Bolted 

 

Figure 153. Tabbed Brackets—(a) Crimp-In-Place and (b) Bolted 

The crimp-in-place tabbed brackets had two keyways where the top and bottom ends of 

the brackets were inserted into the post. The bracket was crimped into place following cable 

placement and insertion into post. The top of the bolted tabbed bracket was inserted only into 

one keyway at the top, while the bottom end was bolted to the front or back flange of the post 

with an SAE Grade 5 hex cap screw (i.e., bolt) and nut. 

10.2 Crimp-In-Place Tabbed Brackets 

The research and development of the tabbed brackets consisted of three rounds of design, 

testing, and evaluation. Crimp-in-place tabbed brackets were developed in the first round. 
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“Crimp-in-place” refers to the method of attachment to the support posts following cable 

insertion. The crimp-in-place tabbed brackets consisted of only one part. These brackets were 

inserted into the top and bottom keyways and crimped into place with channel-lock pliers, thus 

eliminating the need for extra parts, such as bolts, nuts, and washers. An example of an installed 

crimp-in-place tabbed bracket is shown in Figure 154. 

 
Figure 154. Installed Crimp-In-Place Tabbed Bracket 

10.2.1 Round 1 Design Equations 

Equations were developed to guide the design process as well as to determine the actual 

dimensions of the prototype tabbed brackets. The dimensions, idealized load orientations, and 

assumed failure mechanisms and locations that were used in the development of the design 

equations, are shown in Figures 155 and 156. 
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 a) Laterally Loaded     b) Vertically Loaded 

 

Figure 155. Tabbed Bracket—(a) Laterally Loaded and (b) Vertically Loaded 

 
Figure 156. Dimensions and Failure Locations for Tabbed Bracket 

For the lateral loading condition, as shown in Figure 155a, two failure locations were 

assumed in the bracket, as shown in Figure 157, thus resulting in two separate equations. It 

should be noted that dynamic magnification factors were not used in the first round equations as 
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they were not deemed necessary. One half of the horizontal load, PH, was assumed to be 

distributed to each end of the tabbed bracket, as shown in Figure 157. 

 
Figure 157. End Reactions for Use in the Design Equations 

Failure location 1 was assumed to be a pure shear fracture. For pure shear, the shear yield 

strength is the tensile yield strength divided by the square root of three. This result corresponds 

to the maximum octahedral shear stress condition [75]. The same factor can be used with the 

ultimate tensile strength to obtain the ultimate shear strength. The lateral load needed to cause 

failure at location 1 for four surfaces was calculated using Equation 10.1. The steps used to 

derive the equation are also provided. The first step was to equate the end reaction to the 

available shear resistance. 

             
   

 
      

 Where  A1 = shear area for failure location 1 (two surfaces) 

   τu = ultimate shear strength 

 

   

 
      

  

√ 
 

   
 

 

√ 
         (10.1) 

 Where  σu = ultimate tensile strength 

   a = length of head (see Figure 156) 

   t = thickness (see Figure 155a) 
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Failure location 2 was assumed to be a pure tensile fracture. The lateral load needed to 

cause failure at location 2 for two surfaces was calculated using Equation 10.2. The steps used to 

derive the equation are also provided. The first step was to equate the end reaction with the 

available tensile resistance. 

             
   

 
      

 Where  A2 = tensile area for failure location 2 (one surface) 

   

 
        

   
          (10.2) 

 Where  σu = ultimate tensile strength 

   b = width of neck (see Figure 156) 

   t = thickness (see Figure 155a) 

 

The expected lateral release load was determined to be the lesser of Equations 10.1 and 10.2. 

The vertical release load was assumed to occur in pure, plastic bending. As noted 

previously, no dynamic magnification factor was used in the equations from the first round. The 

moment arm, x, was measured between the center of the cable and the mid-plane of the outer 

bracket, as shown in Figure 156b. The vertical release load for the cable was calculated using 

Equation 10.3. The steps used to derive the equation are also provided. 

       

 Where   x = moment arm (see Figure 155b) 

   MP = plastic moment 
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(
   

 
)  

 
 

     

  
   (10.3) 

 Where  σy = yield strength 

   Z = plastic section modulus 

   c = width where bending occurs (see Figure 156) 

   t = thickness (see Figure 155a) 

 

When calculating the shear and tensile capacities of the Round 1 tabbed brackets, the 

steel strengths were 50 ksi (345 MPa) for the yield strength and 70 ksi (483 MPa) for the 

ultimate tensile strength. The actual strengths can be found on the material testing reports, as 

provided in Appendix E. 

10.2.2 Dimensions and Structural Capacities 

There were two versions of the crimp-in-place tabbed brackets. Tabbed bracket Version 1 

was fabricated from 10-gauge, grade 50 sheet steel. Using the design equations, the predicted 

lateral and vertical capacities were 5.88 kips (26.2 kN) and 224 lb (996 N), respectively. Side 

views of the Version 1 bracket are shown in Figure 158. A flat pattern of the tabbed bracket is 

shown in Figure 159. The keyway corresponding to the Version 1 bracket is shown in Figure 

160. 
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Figure 158. Side Views of Tabbed Bracket Version 1—Before and After Installation 

 
Figure 159. Flat Pattern for Tabbed Bracket Version 1 
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Figure 160. Tabbed Bracket Version 1 Keyway 

Tabbed bracket Version 2 was fabricated from 11-gauge, grade 50 sheet steel. Using the 

design equations, the predicted lateral and vertical capacities were 6.28 kips (27.9 kN) and 225 lb 

(1.00 kN), respectively. Side views of the Version 2 bracket are shown in Figure 161. A flat 

pattern of the tabbed bracket is shown in Figure 162. The keyway corresponding to the Version 2 

bracket is shown in Figure 163. 
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Figure 161. Side Views of Tabbed Bracket Version 2—Before and After Installation 

 
Figure 162. Flat Pattern of Tabbed Bracket Version 2 

 
Figure 163. Tabbed Bracket Version 2 Keyway 

The expected release loads for the crimp-in-place tabbed brackets from Round 1 are 

shown in Table 7. 
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Table 7. Expected Release Loads for Round 1 Crimp-In-Place Tabbed Brackets 

Tabbed 

Bracket 

Expected Lateral Release Load 

kips (kN) 
Expected Vertical 

Release Load 

kips (kN) Failure 

Location 1 

Failure 

Location 2 

Version 1 7.77 (34.5) 5.88 (26.2) 0.22 (1.0) 

Version 2 7.77 (34.5) 6.28 (27.9) 0.22 (1.0) 
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11 DYNAMIC COMPONENT TESTS—CRIMP-IN-PLACE TABBED BRACKETS, 

ROUND 1 

 

11.1 Results 

In addition to keyway bolts, several variations of a tabbed bracket configuration were 

tested and evaluated. The tabbed bracket concepts were similar to the keyway bolts, in that they 

also used a keyway to catch or allow for free release of the cable-to-post attachment, depending 

on the orientation of the load—lateral or vertical. All of the tabbed brackets were fabricated from 

hot-rolled, ASTM A1011, HSLA Grade 50 sheet steel. The tabbed bracket thickness, cross-

section width, method of attachment, and the mounting post section were varied for the Round 1 

tests. The same setup and procedures used to test the keyway bolts was also used to test the 

tabbed brackets. Three rounds of design modifications, component testing, and evaluation were 

made to the tabbed brackets. Eight dynamic component tests (test nos. HTTB-1 through HTTB-

8) were performed in the first round and are presented Chapters 10 and 11. Ten dynamic 

component tests (test nos. HTTB-9 through HTTB-16, including test nos. HTTB-9R and HTTB-

12R) were performed in the second round, which are discussed later in Chapters 12 and 13. 

Twenty-four dynamic component tests (test nos. HTTB-17 through HTTB-40) were performed 

in the third round, which are discussed later in Chapters 14 and 15. Each individual concept was 

tested twice in its vertical orientation and twice in its lateral orientation in order to determine the 

structural capacities and cable release behaviors. For the sake of convenience, the consolidated 

drawing sets for all three rounds of dynamic component testing on tabbed brackets is shown in 

Figures 164 through 203. The test matrix and results for the first round of tests on the crimp-in-

place tabbed brackets are summarized in Table 8. 
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Figure 164. Bogie Test Setup, Test Nos. HTTB-1 through HTTB-40 
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Figure 165. Test Jig Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 166. Test Jig Setup for Tabbed Bracket Versions 1 and 2, Test Nos. HTTB-1 through HTTB-40 
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Figure 167. Reinforced S3x5.7 (S76x8.5) Section Version 1 Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 168. Reinforced S3x5.7 (S76x8.5) Section Version 1 Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 169. Reinforced S3x5.7 (S76x8.5) Section Version 2 Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 170. Reinforced S3x5.7 (S76x8.5) Section Version 2 Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 171. Reinforcing Gusset Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 172. Test Jig Setup for Tabbed Bracket Versions 3 and 4, Test Nos. HTTB-1 through HTTB-40 
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Figure 173. Reinforced S3x5.7 (S76x8.5) Section Version 3 Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 174. Reinforced S3x5.7 (S76x8.5) Section Version 3 Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 175. Reinforced S3x5.7 (S76x8.5) Section Version 4 Details, Test Nos. HTTB-1 through HTTB-40 



 

 

2
1
2
 

A
u

g
u

st 2
9

, 2
0
1

3
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
5
-1

3
 

 
Figure 176. Test Jig Setup for Tabbed Bracket Version 5 through 10, Test Nos. HTTB-1 through HTTB-40 



 

 

2
1
3
 

A
u

g
u

st 2
9

, 2
0
1

3
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
5
-1

3
 

 
Figure 177. Mounting Plate Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 178. Reinforced C-Section Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 179. C-Section Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 180. C-Section Details, Test Nos. HTTB-1 through HTTB-40 
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Figure 181. Tabbed Bracket Version 1, Test Nos. HTTB-1 through HTTB-40 
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Figure 182. Version 1 Flat Pattern, Test Nos. HTTB-1 through HTTB-40 
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Figure 183. Tabbed Bracket Version 2, Test Nos. HTTB-1 through HTTB-40 
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Figure 184. Version 2 Flat Pattern, Test Nos. HTTB-1 through HTTB-40 
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Figure 185. Tabbed Bracket Version 3, Test Nos. HTTB-1 through HTTB-40 
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Figure 186. Version 3 Flat Pattern, Test Nos. HTTB-1 through HTTB-40 
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Figure 187. Tabbed Bracket Version 4, Test Nos. HTTB-1 through HTTB-40 
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Figure 188. Version 4 Flat Pattern, Test Nos. HTTB-1 through HTTB-40 
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Figure 189. Tabbed Bracket Version 5, Test Nos. HTTB-1 through HTTB-40 
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Figure 190. Version 5 Flat Pattern, Test Nos. HTTB-1 through HTTB-40 
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Figure 191. Tabbed Bracket Version 6, Test Nos. HTTB-1 through HTTB-40 
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Figure 192. Version 6 Flat Pattern, Test Nos. HTTB-1 through HTTB-40 
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Figure 193. Tabbed Bracket Version 7, Test Nos. HTTB-1 through HTTB-40 
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Figure 194. Version 7 Flat Pattern, Test Nos. HTTB-1 through HTTB-40 



 

 

2
3
1
 

A
u

g
u

st 2
9

, 2
0
1

3
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
5
-1

3
 

 
Figure 195. Tabbed Bracket Version 8, Test Nos. HTTB-1 through HTTB-40 
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Figure 196. Version 8 Flat Pattern, Test Nos. HTTB-1 through HTTB-40 
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Figure 197. Tabbed Bracket Version 9, Test Nos. HTTB-1 through HTTB-40 
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Figure 198. Version 9 Flat Pattern, Test Nos. HTTB-1 through HTTB-40 
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Figure 199. Tabbed Bracket Version 10, Test Nos. HTTB-1 through HTTB-40 



 

 

2
3
6
 

A
u

g
u

st 2
9

, 2
0
1

3
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
5
-1

3
 

 
Figure 200. Version 10 Flat Pattern, Test Nos. HTTB-1 through HTTB-40 
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Figure 201. Bogie Test Matrix, Test Nos. HTTB-1 through HTTB-40 
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Figure 202. Bill of Materials, Test Nos. HTTB-1 through HTTB-40 
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Figure 203. Bill of Materials, Test Nos. HTTB-1 through HTTB-40 
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Table 8 Summary of Dynamic Component Testing on Crimp-In-Place Tabbed Brackets, Round 1 

Test No. 
Load 

Direction 
Tabbed Bracket Gauge Post Section 

Expected 

Strength, 

kips (kN) 

Release 

Load, 

kips (kN) 

Test Result 

HTTB-1 Lateral 
Version 1, Crimp-

In-Place, a1 
10 

S3x5.7 (S76x8.5) 

Section, V1, a2 

5.88 

(26.2) 

5.87 

(26.1) 

Fracture through the bottom 

neck (Failure Location 2) 

HTTB-2 Lateral 
Version 1, Crimp-

In-Place, a1 
10 

S3x5.7 (S76x8.5) 

Section, V1, a2 

5.88 

(26.2) 

5.99 

(26.6) 

Fracture through the bottom 

neck (Failure Location 2) 

HTTB-3 Lateral 
Version 2, Crimp-

In-Place, b1 
11 

S3x5.7 (S76x8.5) 

Section, V2, b2 

6.28 

(27.9) 

6.40 

(28.5) 

Fracture through the bottom 

neck (Failure Location 2) 

HTTB-4 Lateral 
Version 2, Crimp-

In-Place, b1 
11 

S3x5.7 (S76x8.5) 

Section, V2, b2 

6.28 

(27.9) 

6.71 

(29.8) 

Fracture through the bottom 

neck (Failure Location 2) 

HTTB-5 Vertical 
Version 1, Crimp-

In-Place, a1 
10 

S3x5.7 (S76x8.5) 

Section, V1, a2 

0.22 

(1.0) 

2.87 

(12.8) 

Release through keyway, tabs 

scraped along inside of flange 

HTTB-6 Vertical 
Version 1, Crimp-

In-Place, a1 
10 

S3x5.7 (S76x8.5) 

Section, V1, a2 

0.22 

(1.0) 

2.80 

(12.5) 

Release through keyway, tabs 

scraped along inside of flange 

HTTB-7 Vertical 
Version 2, Crimp-

In-Place, b1 
11 

S3x5.7 (S76x8.5) 

Section, V2, b2 

0.22 

(1.0) 

1.43 

(6.36) 

Release through keyway, tabs 

scraped along inside of flange, 

snag load = 0.55 kips (2.4 kN) 

HTTB-8 Vertical 
Version 2, Crimp-

In-Place, b1 
11 

S3x5.7 (S76x8.5) 

Section, V2, b2 

0.22 

(1.0) 

1.20 

(5.34) 

Release through keyway, tabs 

scraped along inside of flange, 

snag load = 0.62 kips (2.7 kN) 
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11.1.1 Test No. HTTB-1 (TB V1, Crimp, Lateral) 

For test no. HTTB-1, the cable pulled on the 10-gauge, grade 50 steel, crimp-in-place, 

tabbed bracket Version 1 at an angle of 90 degrees, perpendicular to the front face of the flange, 

thus imparting a lateral load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The tabbed bracket was inserted into the top and bottom keyways and crimped into place 

with channel lock pliers. As the cable pulled on the tabbed bracket, the top and bottom tabs were 

caught in the narrow parts of their respective keyways. The cable continued to pull on the 

bracket until it fractured through the bottom neck (failure location 2). The peak load was 5.87 

kips (26.1 kN). The force versus time plot is shown in Figure 204. Pre- and post-test photographs 

are shown in Figure 205. Sequential photographs are shown in Figure 206. 
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Figure 204. Force-Time Data, Test No. HTTB-1 
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Figure 205. Pre-Test and Post-Test Photographs, Test No. HTTB-1 

  
  Time = 0 sec     Time = 0.284 sec 

 

  
  Time = 0.298 sec   Time = 0.302 sec, Release 

 

Figure 206. Sequential Photographs, Test No. HTTB-1 
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11.1.2 Test No. HTTB-2 (TB V1, Crimp, Lateral) 

For test no. HTTB-2, the cable pulled on the 10-gauge, grade 50 steel, crimp-in-place, 

tabbed bracket Version 1 at an angle of 90 degrees, perpendicular to the front face of the flange, 

thus imparting a lateral load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The tabbed bracket was inserted into the top and bottom keyholes and crimped into place 

with channel lock pliers. As the cable pulled on the tabbed bracket, the top and bottom tabs were 

caught in the narrow parts of their respective keyways. The cable continued to pull on the 

bracket until it fractured through the bottom neck (failure location 2). The peak load was 5.99 

kips (26.6 kN). The force versus time plot is shown in Figure 207. Pre- and post-test photographs 

are shown in Figure 208. Sequential photographs are shown in Figure 209. 
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Figure 207. Force-Time Data, Test No. HTTB-2 
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Figure 208. Pre-Test and Post-Test Photographs, Test No. HTTB-2 

  
  Time = 0 sec     Time = 0.208 sec 

 

  
  Time = 0.218 sec   Time = 0.220 sec, Release 

 

Figure 209. Sequential Photographs, Test No. HTTB-2 
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11.1.3 Test No. HTTB-3 (TB V2, Crimp, Lateral) 

For test no. HTTB-3, the cable pulled on the 11-gauge, grade 50 steel, crimp-in-place, 

tabbed bracket Version 2 at an angle of 90 degrees, perpendicular to the front face of the flange, 

thus imparting a lateral load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The tabbed bracket was inserted into the top and bottom keyways and crimped into place 

with channel lock pliers. As the cable pulled on the tabbed bracket, the top and bottom tabs were 

caught in the narrow parts of their respective keyways. The cable continued to pull on the 

bracket until it fractured through the bottom neck (failure location 2). The peak load was 6.40 

kips (28.5 kN). The force versus time plot is shown in Figure 210. Pre- and post-test photographs 

are shown in Figure 211. Sequential photographs are shown in Figure 212. 
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Figure 210. Force-Time Data, Test No. HTTB-3 
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Figure 211. Pre-Test and Post-Test Photographs, Test No. HTTB-3 

  
  Time = 0 sec     Time = 0.250 sec 

 

  
  Time = 0.282 sec   Time = 0.286 sec, Release 

 

Figure 212. Sequential Photographs, Test No. HTTB-3 
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11.1.4 Test No. HTTB-4 (TB V2, Crimp, Lateral) 

For test no. HTTB-4, the cable pulled on the 11-gauge, grade 50 steel, crimp-in-place, 

tabbed bracket Version 2 at an angle of 90 degrees, perpendicular to the front face of the flange, 

thus imparting a lateral load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The tabbed bracket was inserted into the top and bottom keyways and crimped into place 

with channel lock pliers. As the cable pulled on the tabbed bracket, the top and bottom tabs were 

caught in the narrow parts of their respective keyways. The cable continued to pull on the 

bracket until it fractured through the bottom neck (failure location 2). The peak load was 6.71 

kips (29.8 kN). The force versus time plot is shown in Figure 213. Pre- and post-test photographs 

are shown in Figure 214. Sequential photographs are shown in Figure 215. 
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Figure 213. Force-Time Data, Test No. HTTB-4 
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Figure 214. Pre-Test and Post-Test Photographs, Test No. HTTB-4 

  
  Time = 0 sec     Time = 0.254 sec 

 

  
  Time = 0.282 sec   Time = 0.286 sec, Release 

 

Figure 215. Sequential Photographs, Test No. HTTB-4 
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11.1.5 Test No. HTTB-5 (TB V1, Crimp, Vertical) 

For test no. HTTB-5, the cable pulled on the 10-gauge, grade 50 steel, crimp-in-place, 

tabbed bracket Version 1 at an angle of 0 degrees, parallel to the front face of the flange, thus 

imparting a vertical load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The tabbed bracket was inserted into the top and bottom keyways and crimped into place 

with channel lock pliers. As the cable began to pull on the tabbed bracket, the bottom tab became 

caught in the top of its keyway. It was apparent from the way that the bracket began to deform 

that there was significant rotational freedom about the bottom end. Rather than bending about the 

middle of the bracket, as was expected, the top half of the bracket wrapped around the cable like 

a hook. Then, the head was pulled upward while scraping against the backside surface of the 

keyway. When the head finally cleared the narrow part of its keyway, the top half of the bracket 

began to rapidly straighten out. Subsequently, the head struck the top of the keyway before 

finally releasing. A peak load of 2.87 kips (12.8 kN) occurred as the head scraped against the 

backside surface of the keyway, just before slipping out. The force versus time plot is shown in 

Figure 216. Pre- and post-test photographs are shown in Figure 217. Sequential photographs are 

shown in Figure 218. 
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Figure 216. Force-Time Data, Test No. HTTB-5 
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Figure 217. Pre-Test and Post-Test Photographs, Test No. HTTB-5 

  
  Time = 0 sec     Time = 0.228 sec 

 

  
  Time = 0.234 sec   Time = 0.240 sec, Release 

 

Figure 218. Sequential Photographs, Test No. HTTB-5 
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11.1.6 Test No. HTTB-6 (TB V1, Crimp, Vertical) 

For test no. HTTB-6, the cable pulled on the 10-gauge, grade 50 steel, crimp-in-place, 

tabbed bracket Version 1 at an angle of 0 degrees, parallel to the front face of the flange, thus 

imparting a vertical load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The tabbed bracket was inserted into the top and bottom keyways and crimped into place 

with channel lock pliers. As the cable began to pull on the tabbed bracket, the bottom tab became 

caught in the top of its keyway. There appeared to be significant rotational freedom about the 

bottom end. The head scraped against the backside surface of the keyway as the top half of the 

bracket was dragged upward by the cable. As the cable continued to pull, the top half of the 

bracket appeared to wrap around the cable, although not as distinctly as in test no. HTTB-5. 

After the head finally slipped out of the narrow part of the keyway, the tab was able to rotate out 

of the wider part of the keyway, thus releasing the cable. A peak load of 2.80 kips (12.5 kN) 

occurred as the head scraped against the backside surface of the keyway, just before slipping out. 

The force versus time plot is shown in Figure 219. Pre- and post-test photographs are shown in 

Figure 220. Sequential photographs are shown in Figure 221. 
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Figure 219. Force-Time Data, Test No. HTTB-6 
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Figure 220. Pre-Test and Post-Test Photographs, Test No. HTTB-6 

  
  Time = 0 sec     Time = 0.312 sec 

 

  
  Time = 0.316 sec   Time = 0.320 sec, Release 

 

Figure 221. Sequential Photographs, Test No. HTTB-6 
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11.1.7 Test No. HTTB-7 (TB V2, Crimp, Vertical) 

For test no. HTTB-7, the cable pulled on the 11-gauge, grade 50 steel, crimp-in-place, 

tabbed bracket Version 2 at an angle of 0 degrees, parallel to the front face of the flange, thus 

imparting a vertical load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The tabbed bracket was inserted into the top and bottom keyways and crimped into place 

with channel lock pliers. As the cable began to pull on the tabbed bracket, the bottom tab became 

caught in the top of its keyway. There appeared to be significant rotational freedom about the 

bottom end. The head scraped against the backside surface of the keyway as the top half of the 

bracket was pulled upward by the cable. The top half of the bracket did not wrap around the 

cable at all, as it seemed to do in test nos. HTTB-5 and HTTB-6. After the head finally slipped 

out of the narrow part of the keyway, the tab was able to rotate out of the wider part of the 

keyway. A peak load of 1.43 kips (6.36 kN) occurred as the head scraped against the backside 

surface of the keyway, just before slipping out. After the tab cleared the keyway, the cable was 

briefly snagged on the head, exerting a snag load of 551 lb (2,450 N). The force versus time plot 

is shown in Figure 222. Pre- and post-test photographs are shown in Figure 223. Sequential 

photographs are shown in Figure 224. 
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Figure 222. Force-Time Data, Test No. HTTB-7 
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Figure 223. Pre-Test and Post-Test Photographs, Test No. HTTB-7 

  
  Time = 0 sec     Time = 0.136 sec 

 

  
  Time = 0.144 sec   Time = 0.150 sec, Release 

 

Figure 224. Sequential Photographs, Test No. HTTB-7 
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11.1.8 Test No. HTTB-8 (TB V2, Crimp, Vertical) 

For test no. HTTB-8, the cable pulled on the 11-gauge, grade 50 steel, crimp-in-place, 

tabbed bracket Version 2 at an angle of 0 degrees, parallel to the front face of the flange, thus 

imparting a vertical load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The tabbed bracket was inserted into the top and bottom keyways and crimped into place 

with channel lock pliers. As the cable began to pull on the tabbed bracket, the bottom tab became 

caught in the top of its keyway. There appeared to be significant rotational freedom about the 

bottom end. The head scraped against the backside surface of the keyway as the top half of the 

bracket was pulled upward by the cable. The top half of the bracket did not wrap around the 

cable at all, as it seemed to do in test nos. HTTB-5 and HTTB-6. After the head finally slipped 

out of the narrow part of the keyway, the tab was able to rotate out of the wider part of the 

keyway. A peak force of 1.20 kips (5.34 kN) occurred as the head scraped against the backside 

surface of the keyway, just before slipping out. After the head cleared the keyway, the cable was 

briefly snagged on the head, exerting a snag load of 615 lb (2,740 N). The force versus time plot 

is shown in Figure 225. Pre- and post-test photographs are shown in Figure 226. Sequential 

photographs are shown in Figure 227. 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

263 

 
Figure 225. Force-Time Data, Test No. HTTB-8 
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Figure 226. Pre-Test and Post-Test Photographs, Test No. HTTB-8 

  
  Time = 0 sec     Time = 0.150 sec 

 

  
  Time = 0.158 sec   Time = 0.164 sec, Release 

 

Figure 227. Sequential Photographs, Test No. HTTB-8 
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11.2 Discussion 

Eight dynamic component tests were performed in the first round of testing on tabbed 

brackets. Both versions of the tabbed brackets performed very well when pulled laterally. For 

tabbed bracket Version 1, the design equations predicted a lateral release load of 5.88 kips (26.2 

kN), and the actual average lateral release load was 5.93 kips (26.4 kN). For tabbed bracket 

Version 2, the design equations predicted a lateral release load of 6.28 kips (27.9 kN), and the 

actual average lateral release load was 6.56 kips (29.2 kN). 

Unfortunately, the crimp-in-place tabbed brackets provided vertical release loads that 

were deemed too high. For tabbed bracket Version 1, the design equations predicted a vertical 

release load of 224 lb (996 N), and the actual average vertical release load was 2.84 kips (12.6 

kN). For tabbed bracket Version 2, the design equations predicted a vertical release load of 225 

lb (1.00 kN), and the actual average vertical release load was 1.32 kips (5.87 kN). The high-

speed video footage revealed tab scraping against the backside surface of the flange as the heads 

of the tabbed brackets were pulled upward by the cable. 

The design equations did not account for the tab scraping. In the case of the keyway 

bolts, the tab-scraping problem was solved with the addition of a ¼-in. (6-mm) shaft extension, 

thus creating additional clearance between the button head and the backside surface of the 

flange. However, a neck extension would not have worked with the crimp-in-place tabbed 

brackets; the crimp-in-place tabbed brackets were not fixed in place with the use of a bolt and 

nut. The space created by the extension would have been immediately lost as the bracket began 

to move upward. 

In addition to the high vertical release loads, the crimp-in-place tabbed brackets were 

difficult to install. The brackets were crimped into place over the cable. However, it was difficult 
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to obtain a good grip with the channel lock pliers in this scenario. There is concern that these 

brackets may be improperly installed in the field. In addition, removal may also be cumbersome. 

Due to the undesirable vertical release loads and difficult installation and removal of the 

crimp-in-place tabbed brackets, bolted tabbed brackets were considered for the next design 

iteration. 
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12 OVERVIEW OF BOLTED TABBED BRACKETS—ROUND 2 

12.1 Introduction 

Following the testing on the crimp-in-place, tabbed brackets, it was realized that future 

work was still needed. The research and development effort on the cable-to-post attachments for 

use with the bottom three cables was continued with the second round of design, testing, and 

evaluation for the tabbed brackets. Once again, the target lateral and vertical release loads were 

6.00 kips (26.7 kN) and 225 lb (1.00 kN), respectively. The tabbed brackets that were developed 

in the second round were bolted to the front flange, rather than being crimped into place. 

12.1.1 Dynamic Bogie Tests 

All of the bolted tabbed brackets presented herein were tested using the same dynamic 

bogie testing setup and procedures described in Chapter 6. Different load orientations were used 

in order to determine the vertical and lateral release loads for each concept under dynamic 

loading conditions. 

12.2 Bolted Tabbed Brackets 

The bolted tabbed brackets consisted of three pieces—a non-symmetric tabbed bracket, a 

bolt, and a nut. While there were three parts versus two parts for the extended keyway bolt 

concept or common J bolts used in existing low-tension cable barriers, hardware installation was 

considered to be rather straight forward and easy. An installed bolted tabbed bracket is shown in 

Figure 228. 
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Figure 228. Installed Bolted Tabbed Bracket 

12.2.1 Round 2 Design Equations 

Equations were developed to guide the design process as well as to determine the actual 

dimensions of the prototype tabbed brackets. The dimensions, idealized load orientations, and 

assumed failure mechanisms and locations that were used in the development of the design 

equations, are shown in Figures 229 and 230. 

 
 a) Laterally Loaded      b) Vertically Loaded 

 

Figure 229. Bolted Tabbed Bracket—(a) Laterally Loaded and (b) Vertically Loaded 
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Figure 230. Dimensions and Failure Locations for Bolted Tabbed Bracket Design 

For the lateral loading condition, as shown in Figure 229a, four failure locations were 

assumed in the bracket, as shown in Figure 231, thus resulting in four separate equations. It 

should be noted that dynamic magnification factors were not used in the second round of 

equations as they were not deemed necessary. One half of the horizontal load, PH, was assumed 

to be distributed to each end of the tabbed bracket, as shown in Figure 231. 

 
Figure 231. End Reactions for Use in the Design Equations 

Failure location 1 was assumed to be a pure shear fracture. For pure shear, the shear yield 

strength is the tensile yield strength divided by the square root of three. This result corresponds 

to the maximum octahedral shear stress condition [75]. The same factor can be used with the 

ultimate tensile strength to obtain the ultimate shear strength. The lateral load needed to cause 
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failure at location 1 for two surfaces was calculated using Equation 12.1. The steps needed to 

derive the equation are also provided. The first step was to equate the end reaction with the 

available shear resistance. 

             
   

 
      

 Where  A1 = shear area for failure location 1 (two surfaces) 

   τu ultimate shear strength 

 
   

 
      

  

√ 
 

   
 

 

√ 
         (12.1) 

 Where  σu = ultimate tensile strength 

   a = length of head (see Figure 230) 

   t = thickness (see Figure 229a) 

 

Failure location 2 was assumed to be a pure tensile fracture through the neck. The lateral 

load needed to cause failure at location 2 was calculated using Equation 12.2. The steps needed 

to derive the equation are also provided. The first step was to equate the end reaction with the 

available tensile resistance. 

             
   

 
      

 Where  A2 = tensile area for failure location 2 (one surface) 

   

 
        

   
           (12.2) 

 Where  σu = ultimate tensile strength 

   b = width of neck (see Figure 230) 

   t = thickness (see Figure 229a) 

 

Failure location 3 was assumed to be a pure tensile fracture at the location of the bolt 

hole. It is common to use an additional width reduction of 1/16 in. (1.6 mm) for a bolt hole when 
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calculating the tensile area for such a fracture. The lateral load needed to cause failure at location 

3 was calculated using Equation 12.3. The steps needed to derive the equation are also provided. 

The first step was to equate the end reaction with the available tensile resistance. 

             
   

 
      

 Where  A3 = tensile area for failure location 3 

   

 
 (        )   

   
                           (12.3) 

Where  d = width of bottom tab (see Figure 230) 

  D = diameter of hole (see Figure 230) 

  υ = width reduction when using hole diameter= 1/16 in. (1.6 mm) 

  db = diameter of bolt 

  μ = width reduction when using bolt diameter = 1/8 in. (3.2 mm) 

 

Failure location 4 was assumed to be a bearing and/or tearing failure at the bolt hole. 

Equation J3-6a from the American Institute of Steel Construction (AISC) Specification for 

Structural Steel Buildings [76] was used as a starting point. 

                      (AISC Equation J3-6a) 

 Where  lc = clear distance, in the direction of the force, between   

    the edge of the hole and the edge of the material 

   t = thickness of the connected material 

   db = diameter of the bolt 

   σu = ultimate tensile strength 

 

The left side of the inequality is the tearing strength, and the right side is the bearing strength. 

Equation 12.4, which gives the applied load, PH, needed to cause tearing failure, was 

derived by equating the end reaction to the tearing strength. 

             
   

 
                

 

 
     

   
    (  

 

 
)        (  

    

 
)      (12.4) 
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Where  f =  distance from the center of the bolt hole to the bottom   

   edge of the bolted tabbed bracket (see Figure 230) 

  D = diameter of the bolt hole (see Figure 230) 

  db = diameter of the bolt 

  υ = 1/16 in. (1.6 mm) 

  t = thickness of the connected material 

  σu = ultimate tensile strength 

 

The bearing strength only considers the diameter of the bolt and the thickness of the 

material. Only two different sizes of bolt were considered—1/4 in. (6 mm) and 5/16 in. (8 mm). 

Assuming an ultimate tensile strength of 70 ksi (483 MPa), the bearing strengths were calculated 

for the range of steel thicknesses that were being considered and are shown in Table 9. 

Table 9 Calculated Bearing Strengths with σu = 70 ksi (483 MPa) 

Steel Gauge t, in. (mm) 
Bearing Strength, kips (kN) = 2.4dbtσu 

For db = 1/4 in. (6 mm) For db = 5/16 in. (8 mm) 

14 0.0747 (1.8974) 3.14 (14.0) 3.92 (17.4) 

13 0.0897 (2.2784) 3.77 (16.8) 4.71 (20.9) 

12 0.1046 (2.6568) 4.39 (19.5) 5.49 (24.4) 

11 0.1196 (3.0378) 5.02 (22.3) 6.28 (27.9) 

10 0.1345 (3.4163) 5.65 (25.1) 7.06 (31.4) 

 

The minimum bearing strength was 3.14 kips (14.0 kN). According to the assumed load 

distribution, the total lateral load, PH, based on a bearing capacity of 3.14 kips (14.0 kN) at the 

bolt hole of one end, would be 6.28 kips (27.9 kN), which was greater than the target lateral 

release load of 6.00 kips (26.7 kN). Thus, the bearing strength was effectively ignored during the 

design process. 

The expected lateral release load for a particular bolted tabbed bracket was the minimum 

load calculated from Equations 12.1 through 12.4. 

The vertical release load was assumed to occur in pure, plastic bending. As noted 

previously, no dynamic magnification factor was used in the second round equations. The 
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moment arm, x, was measured between the center of the cable and the mid-plane of the outer 

bracket, as shown in Figure 229b. The vertical release load for the cable was calculated using 

Equation 12.5. The steps used to derive the equation are also provided below. 

       

 Where  x = moment arm (see Figure 229b) 

   MP = plastic moment 

 

   
  

 
 

   

 
 

   

 
  

 
 

     

  
    (12.5) 

Where  Z = plastic section modulus where bending occurs 

  σy = yield strength 

  c = cross-sectional width where bending occurs (see Figure 230) 

  t = thickness (see Figure 229a) 

 

When calculating the shear and tensile capacities of the Round 1 tabbed brackets, the 

steel strengths were 50 ksi (345 MPa) for the yield strength and 70 ksi (483 MPa) for the 

ultimate tensile strength. The actual strengths can be found on the material testing reports, as 

provided in Appendix E. 

12.2.2 Dimensions and Structural Capacities 

Tabbed bracket Versions 3 and 4 were tested in the second round. Tabbed bracket 

Version 3 was fabricated from 11-gauge, grade 50 sheet steel. Using the design equations, the 

predicted lateral and vertical capacities were 6.28 kips (27.9 kN) and 225 lb (1.00 kN), 

respectively. A side view of tabbed bracket Version 3 is shown in Figure 232. A flat pattern of 

the tabbed bracket is shown in Figure 233. The keyway corresponding to tabbed bracket Version 

3 is shown in Figure 234. 
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Figure 232. Side View of Tabbed Bracket Version 3 

 
Figure 233. Flat Pattern of Tabbed Bracket Version 3 
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Figure 234. Tabbed Bracket Version 3 Keyway 

Tabbed bracket Version 4 was fabricated from 10-gauge, grade 50 sheet steel. Using the 

design equations, the predicted lateral and vertical capacities were 5.88 kips (26.2 kN) and 224 lb 

(996 N), respectively. A side view of tabbed bracket Version 4 is shown in Figure 235. A flat 

pattern of the tabbed bracket is shown in Figure 236. The keyway corresponding to tabbed 

bracket Version 4 is shown in Figure 237. 
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Figure 235. Side View of Tabbed Bracket Version 4 

 
Figure 236. Flat Pattern of Tabbed Bracket Version 4 
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Figure 237. Tabbed Bracket Version 4 Keyway 

The expected release loads for the bolted tabbed brackets from Round 2 are shown in 

Table 10. 

Table 10. Expected Release Loads for Round 2 Bolted Tabbed Brackets 

Tabbed 

Bracket 

Expected Lateral Release Load 

kips (kN) 

Expected 

Vertical Release 

Load 

kips (kN) 

Failure 

Location 1 

Failure 

Location 2 

Failure 

Location 3 

Failure 

Location 4 

Version 3 7.77 (34.5) 6.28 (27.9) 6.28 (27.9) 6.28 (27.9) 0.22 (1.0) 

Version 4 7.77 (34.5) 5.88 (26.2) 5.88 (26.2) 7.06 (31.4) 0.22 (1.0) 
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13 DYNAMIC COMPONENT TESTS—TABBED BRACKETS, ROUND 2 

13.1 Results 

All of the tabbed brackets were fabricated from hot-rolled, ASTM A1011, HSLA Grade 

50 sheet steel. The tabbed bracket thickness, cross-section width, method of attachment, and the 

mounting post section were varied for the Round 2 tests. The same setup and procedures used to 

test the keyway bolts was also used to test the tabbed brackets. Three rounds of design 

modifications, component testing, and evaluation were made to the tabbed brackets. Eight 

dynamic component tests (test nos. HTTB-1 through HTTB-8) were performed in the first round, 

as discussed in Chapters 10 and 11. Ten dynamic component tests (test nos. HTTB-9 through 

HTTB-16, including test nos. HTTB-9R and HTTB-12R) were performed in the second round 

and are presented in Chapters 12 and 13. Twenty-four dynamic component tests (test nos. 

HTTB-17 through HTTB-40) were performed in the third round, which are discussed later in 

Chapters 14 and 15. Each individual concept was tested twice in its vertical orientation and twice 

in its lateral orientation in order to determine the structural capacities and cable release 

behaviors. For the sake of convenience, the consolidated drawing sets for all three rounds of 

dynamic component testing on tabbed brackets is shown in Figures 164 through 203, as provided 

in Chapter 11. The test matrix and results for the second round of tests on the bolted tabbed 

brackets are summarized in Table 11. 
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Table 11. Summary of Dynamic Component Testing on Bolted Tabbed Brackets, Round 2 

Test No. 
Load 

Direction 

Tabbed 

Bracket 
Gauge Post Section 

Expected 

Strength, 

kips (kN) 

Release 

Load, 

kips 

(kN) 

Test Result 

HTTB-9 Vertical 
Version 3, 

Bolted, c1 
11 

S3x5.7 (S76x8.5) 

Section, V3, c2 

0.22 

(1.0) 
NA 

No load cell data, heads scraped along 

the inside of the flange before the head 

released through the keyway 

HTTB-9R Vertical 
Version 3, 

Bolted, c1 
11 

S3x5.7 (S76x8.5) 

Section, V3, c2 

0.22 

(1.0) 

0.79 

(3.5) 

Tabs scraped along the inside of the 

flange before the head released 

through the keyway, snag load = 0.53 

kips (2.4 kN) 

HTTB-10 Vertical 
Version 3, 

Bolted, c1 
11 

S3x5.7 (S76x8.5) 

Section, V3, c2 

0.22 

(1.0) 

0.76 

(3.4) 

Tabs scraped along the inside of the 

flange before the head released 

through the keyway, snag load = 0.46 

kips (2.1 kN) 

HTTB-11 Lateral 
Version 3, 

Bolted, c1 
11 

S3x5.7 (S76x8.5) 

Section, V3, c2 

6.28 

(27.9) 

5.14 

(22.9) 

Fracture through the neck (Failure 

Location 2) 

HTTB-12 Lateral 
Version 3, 

Bolted, c1 
11 

S3x5.7 (S76x8.5) 

Section, V3, c2 

6.28 

(27.9) 

2.38 

(10.6) 

No high-speed video, Tabs caught in 

narrow part of keyway initially, but 

slipped out, no fracture 

HTTB-12R Lateral 
Version 3, 

Bolted, c1 
11 

S3x5.7 (S76x8.5) 

Section, V3, c2 

6.28 

(27.9) 

5.21 

(23.2) 

Fracture through the neck (Failure 

Location 2) 

HTTB-13 Vertical 
Version 4, 

Bolted, d1 
10 

S3x5.7 (S76x8.5) 

Section, V4, d2 

0.22 

(1.0) 

0.90 

(4.0) 

Tabs scraped along the inside of the 

flange before the head released 

through the keyway, snag load = 0.52 

kips (2.3 kN) 
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Table 11. Summary of Dynamic Component Testing on Bolted Tabbed Brackets, Round 2 (Continued) 

Test No. 
Load 

Direction 

Tabbed 

Bracket 
Gauge Post Section 

Expected 

Strength, 

kips (kN) 

Release 

Load, 

kips 

(kN) 

Test Result 

HTTB-14 Vertical 
Version 4, 

Bolted, d1 
10 

S3x5.7 (S76x8.5) 

Section, V4, d2 

0.22 

(1.0) 

0.99 

(4.4) 

No high-speed video, tabs scraped 

along the inside of the flange before 

the head released through the keyway, 

snag load = 0.63 kips (2.8 kN) 

HTTB-15 Lateral 
Version 4, 

Bolted, d1 
10 

S3x5.7 (S76x8.5) 

Section, V4, d2 

5.88 

(26.2) 

4.45 

(19.8) 

Fracture through the neck (Failure 

Location 2) 

HTTB-16 Lateral 
Version 4, 

Bolted, d1 
10 

S3x5.7 (S76x8.5) 

Section, V4, d2 

5.88 

(26.2) 

4.69 

(20.9) 

Fracture through the neck (Failure 

Location 2) 
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13.1.1 Test No. HTTB-9 (TB V3, Bolted, Vertical) 

For test no. HTTB-9, the cable pulled on the 11-gauge, grade 50 steel, bolted tabbed 

bracket Version 3 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) section. The 

top end of the tabbed bracket rested in the narrow part of the keyway, while the bottom end was 

secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. The bracket began 

to bend upward as the cable began to pull on it. As it moved upward, the head scraped against 

the backside surface of the front flange until it cleared the narrow part of the keyway. After the 

head cleared the narrow part of the keyway, the top end was able to rotate out, thus releasing the 

cable. Due to technical difficulties, no force-time data was recorded, but the high-speed video 

proved to be very useful. Pre- and post-test photographs are shown in Figure 238. Sequential 

photographs are shown in Figure 239. 
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Figure 238. Pre-Test and Post-Test Photographs, Test No. HTTB-9 

  
  Time = 0 sec     Time = 0.134 sec 

 

  
  Time = 0.168 sec   Time = 0.200 sec, Release 

 

Figure 239. Sequential Photographs, Test No. HTTB-9 
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13.1.2 Test No. HTTB-9R (TB V3, Bolted, Vertical) 

Since no force-time data was collected for test no. HTTB-9, test no. HTTB-9R was 

performed as a replacement test. For the repeated test, the cable pulled on the 11-gauge, grade 50 

steel, bolted tabbed bracket Version 3 at an angle of 0 degrees, parallel to the front face of the 

flange, thus imparting a vertical load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 

(S76x8.5) section. The top end of the tabbed bracket rested in the keyway, while the bottom end 

was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. The bracket 

began to bend upward as the cable began to pull on it. As it moved upward, the head scraped 

against the backside surface of the front flange until it cleared the narrow part of the keyway. 

After the head cleared the narrow part of the keyway, the top end was able to rotate out. A peak 

force of 790 lb (3.51 kN) occurred as the head scraped against the backside surface of the 

keyway, just before slipping out. After the head cleared the keyway, the cable was briefly 

snagged on the head, exerting a snag load of 528 lb (2.35 kN). The force versus time plot is 

shown in Figure 240. Pre- and post-test photographs are shown in Figure 241. Sequential 

photographs are shown in Figure 242. 
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Figure 240. Force-Time Data, Test No. HTTB-9R 
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Figure 241. Pre-Test and Post-Test Photographs, Test No. HTTB-9R 

  
  Time = 0 sec     Time = 0.182 sec 

 

  
  Time = 0.198 sec   Time = 0.212 sec, Release 

 

Figure 242. Sequential Photographs, Test No. HTTB-9R 
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13.1.3 Test No. HTTB-10 (TB V3, Bolted, Vertical) 

For test no. HTTB-10, the cable pulled on the 11-gauge, grade 50 steel, bolted tabbed 

bracket Version 3 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) section. The 

top end of the tabbed bracket rested in the keyway, while the bottom end was secured to the 

flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. The bracket began to bend 

upward as the cable began to pull on it. As it moved upward, the head scraped against the 

backside surface of the front flange until it cleared the narrow part of the keyway. After the head 

cleared the narrow part of the keyway, the top end was able to rotate out. A peak force of 760 lb 

(3.38 kN) occurred as the head scraped against the backside surface of the keyway, just before 

slipping out. After the head cleared the keyway, the cable was briefly snagged on the head, 

exerting a snag load of 462 lb (2.06 kN). The force versus time plot is shown in Figure 243. Pre- 

and post-test photographs are shown in Figure 244. Sequential photographs are shown in Figure 

245. 
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Figure 243. Force-Time Data, Test No. HTTB-10 
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Figure 244. Pre-Test and Post-Test Photographs, Test No. HTTB-10 

  
  Time = 0 sec     Time = 0.116 sec 

 

  
  Time = 0.122 sec   Time = 0.134 sec, Release 

 

Figure 245. Sequential Photographs, Test No. HTTB-10 
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13.1.4 Test No. HTTB-11 (TB V3, Bolted, Lateral) 

For test no. HTTB-11, the cable pulled on the 11-gauge, grade 50 steel, bolted tabbed 

bracket Version 3 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The top end of the tabbed bracket rested in the keyway, while the bottom end was 

secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. As the cable began 

to pull on the bracket, the head became caught in the narrow part of the keyway. The cable 

continued to pull until the bracket fractured through the neck (failure location 2). A peak force of 

5.14 kips (22.9 kN) occurred as the head was pulled against the inside of the keyway, just before 

fracture. The force versus time plot is shown in Figure 246. Pre- and post-test photographs are 

shown in Figure 247. Sequential photographs are shown in Figure 248. 
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Figure 246. Force-Time Data, Test No. HTTB-11 
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Figure 247. Pre-Test and Post-Test Photographs, Test No. HTTB-11 

  
  Time = 0 sec     Time = 0.190 sec 

 

  
  Time = 0.216 sec   Time = 0.220 sec, Release 

 

Figure 248. Sequential Photographs, Test No. HTTB-11 
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13.1.5 Test No. HTTB-12 (TB V3, Bolted, Lateral) 

For test no. HTTB-12, the cable pulled on the 11-gauge, grade 50 steel, bolted tabbed 

bracket Version 3 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The top end of the tabbed bracket rested in the keyway, while the bottom end was 

secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. As the cable began 

to pull on the bracket, the head became caught in the narrow part of the keyway. As the cable 

continued to pull on the bracket, the head began to slip out of the keyway until it was eventually 

free. No fracture had occurred. A peak force of 2.38 kips (10.6 kN) occurred as the head was 

pulled against the inside of the keyway, before slipping out. There was no high-speed video for 

this test, but the standard-speed video was useful nonetheless. The force versus time plot is 

shown in Figure 249. Pre- and post-test photographs are shown in Figure 250. Sequential 

photographs are shown in Figure 251. 
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Figure 249. Force-Time Data, Test No. HTTB-12 
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Figure 250. Pre-Test and Post-Test Photographs, Test No. HTTB-12 

  
  Time = 0 sec     Time = 0.225 sec 

 

  
  Time = 0.260 sec   Time = 0.295 sec, Release 

 

Figure 251. Sequential Photographs, Test No. HTTB-12 
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13.1.6 Test No. HTTB-12R (TB V3, Bolted, Lateral) 

For test no. HTTB-12R, the cable pulled on the 11-gauge, grade 50 steel, bolted tabbed 

bracket Version 3 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The previous test (test no. HTTB-12) exposed a fabrication flaw in the tabbed bracket. 

When installed, the top end of the bracket did not rest against the bottom of the slot, but it was 

angled slightly upward. Because of this slight upward angle, there was less contact area between 

the tabs and the inside of the keyway. Thus, the head slipped out of the keyway in test no. 

HTTB-12, rather than becoming caught in the keyway when pulled laterally. For this reason, the 

bracket was bent slightly to correct the flaw, as shown in Figure 252. The top end of the tabbed 

bracket rested in the keyway, while the bottom end was secured to the flange with a 5/16-in. (8-

mm), grade 5, hex cap screw and nut. As the cable began to pull on the bracket, the head became 

caught in the narrow part of the keyway. The cable continued to pull until the bracket fractured 

through the neck (failure location 2). A peak force of 5.21 kips (23.2 kN) occurred as the head 

was pulled against the inside of the keyway, just before fracture. The force versus time plot is 

shown in Figure 253. Pre- and post-test photographs are shown in Figure 254. Sequential 

photographs are shown in Figure 255. 
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  Before Correction    Corrected 

 

Figure 252. Correction of a Fabrication Flaw 

 
Figure 253. Force-Time Data, Test No. HTTB-12R 
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Figure 254. Pre-Test and Post-Test Photographs, Test No. HTTB-12R 

  
  Time = 0 sec     Time = 0.304 sec 

 

  
  Time = 0.334 sec   Time = 0.342 sec, Release 

 

Figure 255. Sequential Photographs, Test No. HTTB-12R 
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13.1.7 Test No. HTTB-13 (TB V4, Bolted, Vertical) 

For test no. HTTB-13, the cable pulled on the 10-gauge, grade 50 steel, bolted tabbed 

bracket Version 4 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) section. The 

bracket had to be bent in order to correct the fabrication flaw discovered in test no. HTTB-12. 

The top end of the tabbed bracket rested in the keyway, while the bottom end was secured to the 

flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. The bracket began to bend 

upward as the cable began to pull on it. As it moved upward, the head scraped against the 

backside surface of the front flange until it cleared the narrow part of the keyway. After the head 

cleared the narrow part of the keyway, the top end was able to rotate out. A peak force of 899 lb 

(4.00 kN) occurred as the head scraped against the backside surface of the keyway, just before 

slipping out. After the head cleared the keyway, the cable was briefly snagged on the head, 

exerting a snag load of 515 lb (2.29 kN). The force versus time plot is shown in Figure 256. Pre- 

and post-test photographs are shown in Figure 257. Sequential photographs are shown in Figure 

258. 
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Figure 256. Force-Time Data, Test No. HTTB-13 
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Figure 257. Pre-Test and Post-Test Photographs, Test No. HTTB-13 

  
  Time = 0 sec     Time = 0.258 sec 

 

  
  Time = 0.270 sec   Time = 0.280 sec, Release 

 

Figure 258. Sequential Photographs, Test No. HTTB-13 
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13.1.8 Test No. HTTB-14 (TB V4, Bolted, Vertical) 

For test no. HTTB-14, the cable pulled on the 10-gauge, grade 50 steel, bolted tabbed 

bracket Version 4 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) section. The 

bracket had to be bent in order to correct the fabrication flaw discovered in test no. HTTB-12. 

The top end of the tabbed bracket rested in the keyway, while the bottom end was secured to the 

flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. The bracket began to bend 

upward as the cable began to pull on it. As it moved upward, the head scraped against the 

backside surface of the front flange until it cleared the narrow part of the keyway. After the head 

cleared the narrow part of the keyway, the top end was able to rotate out. A peak force of 989 lb 

(4.40 kN) occurred as the head scraped against the backside surface of the keyway, just before 

slipping out. After the head cleared the keyway, the cable was briefly snagged on the head, 

exerting a snag load of 627 lb (2.79 kN). There was no high-speed video for this test, but the 

standard-speed video was useful nonetheless. The force versus time plot is shown in Figure 259. 

Pre- and post-test photographs are shown in Figure 260. Sequential photographs are shown in 

Figure 261. 
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Figure 259. Force-Time Data, Test No. HTTB-14 
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Figure 260. Pre-Test and Post-Test Photographs, Test No. HTTB-14 

  
  Time = 0 sec     Time = 0.117 sec 

 

  
  Time = 0.170 sec   Time = 0.186 sec, Release 

 

Figure 261. Sequential Photographs, Test No. HTTB-14 
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13.1.9 Test No. HTTB-15 (TB V4, Bolted, Lateral) 

For test no. HTTB-15, the cable pulled on the 10-gauge, grade 50 steel, bolted tabbed 

bracket Version 4 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The bracket had to be bent in order to correct the fabrication flaw discovered in test no. 

HTTB-12. The top end of the tabbed bracket rested in the keyway, while the bottom end was 

secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. As the cable began 

to pull on the bracket, the head became caught in the narrow part of the keyway. The cable 

continued to pull until the bracket fractured through the neck (failure location 2). A peak load of 

4.45 kips (19.8 kN) occurred as the head was pulled against the inside of the keyway, just before 

fracture. The force versus time plot is shown in Figure 262. Pre- and post-test photographs are 

shown in Figure 263. Sequential photographs are shown in Figure 264. 
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Figure 262. Force-Time Data, Test No. HTTB-15 
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Figure 263. Pre-Test and Post-Test Photographs, Test No. HTTB-15 

  
  Time = 0 sec     Time = 0.282 sec 

 

  
  Time = 0.300 sec   Time = 0.308 sec, Release 

 

Figure 264. Sequential Photographs, Test No. HTTB-15 
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13.1.10 Test No. HTTB-16 (TB V4, Bolted, Lateral) 

For test no. HTTB-16, the cable pulled on the 10-gauge, grade 50 steel, bolted tabbed 

bracket Version 4 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-in. (127-mm) long, steel S3x5.7 (S76x8.5) 

section. The bracket had to be bent in order to correct the fabrication flaw discovered in test no. 

HTTB-12. The top end of the tabbed bracket rested in the keyway, while the bottom end was 

secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. As the cable began 

to pull on the bracket, the head became caught in the narrow part of the keyway. The cable 

continued to pull until the bracket fractured through the neck (failure location 2). A peak force of 

4.69 kips (20.9 kN) occurred as the head was pulled against the inside of the keyway, just before 

fracture. The force versus time plot is shown in Figure 265. Pre- and post-test photographs are 

shown in Figure 266. Sequential photographs are shown in Figure 267. 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

308 

 
Figure 265. Force-Time Data, Test No. HTTB-16 
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Figure 266. Pre-Test and Post-Test Photographs, Test No. HTTB-16 

  
  Time = 0 sec     Time = 0.284 sec 

 

  
  Time = 0.312 sec   Time = 0.320 sec, Release 

 

Figure 267. Sequential Photographs, Test No. HTTB-16 
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13.2 Discussion 

Ten dynamic component tests were performed in the second round of tests on bolted 

tabbed brackets. A fabrication flaw was detected that affected the lateral release behavior of the 

bolted tabbed bracket in test no. HTTB-12. When the tabbed bracket was pulled laterally, its 

head was briefly caught in the narrow, lower slot of the keyway. However, it eventually slipped 

out and released the cable before the full fracture load was developed. Upon inspection, it 

became apparent that the tabbed bracket was not properly seated. The head should have been 

resting against the bottom of the keyway, but it was not. The flaw was subsequently corrected, 

and the full fracture load was developed for all of the subsequent lateral pull tests. 

Once the fabrication flaw was corrected, both versions performed consistently when 

pulled laterally. For the bolted tabbed bracket Version 3, the design equations predicted a lateral 

release load of 6.28 kips (27.9 kN), and the actual average lateral release load was 5.18 kips 

(23.0 kN). For the bolted tabbed bracket Version 4, the design equations predicted a lateral 

release load of 5.88 kips (26.2 kN), and the actual average lateral release load was 4.57 kips 

(20.3 kN). The actual lateral release loads were lower than the loads predicted by the design 

equations by a factor of approximately 5/6. 

The Round 2 vertical release loads of the bolted tabbed brackets were significantly lower 

than those observed for the crimp-in-place tabbed brackets in Round 1 testing. However, they 

were still three to four and a half times higher than the loads predicted by the design equations. 

For the bolted tabbed bracket Version 3, the design equations predicted a vertical release load of 

225 lb (1.00 kN), and the actual average vertical release load was 775 lb (3.45 kN). For tabbed 

bracket Version 4, the design equations predicted a vertical release load of 224 lb (996 N), and 

the actual average vertical release load was 944 lb (4.20 kN). Once again, the high-speed video 

revealed tab scraping against the inside of the flange as a factor. However, the tab scraping 
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observed with the Round 2 bolted tabbed brackets appeared to be less severe than the tab 

scraping observed with the Round 1 crimp-in-place tabbed brackets. Thus, it was determined that 

in order to significantly reduce the vertical release loads, not only would tab scraping need to be 

eliminated, but the bending stiffness would also need to be reduced. For Round 3, the vertical 

release load equations would be modified by a dynamic magnification factor of 1.5. 
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14 OVERVIEW OF BOLTED TABBED BRACKETS—ROUND 3 

14.1 Introduction 

The effort to design cable-to-post attachments for the bottom three cables  was continued 

with the third (final) round of tabbed bracket design, testing, and evaluation. Six different 

versions of bolted tabbed brackets were created. As stated previously, the original targets for the 

lateral and vertical release loads were 6.00 kips (26.7 kN) and 225 lb (1.00 kN), respectively. 

However, those targets were not strictly followed for all of the tabbed brackets that were 

designed in this round, as will be discussed in subsection 14.2.2. 

14.1.1 Dynamic Bogie Tests 

All of the bolted tabbed brackets presented in this chapter were tested according to the 

dynamic bogie testing setup and procedures described in Chapter 6. Different load orientations 

were used in order to determine the vertical and lateral release loads for each concept under 

dynamic loading conditions. 

14.2 Bolted Tabbed Bracket Design Modifications 

There were three main differences between the bolted tabbed brackets in the second and 

third rounds. First, the shaft of the tabbed brackets was extended, similar to the extended keyway 

bolts. This change created space between the tabs and the back of the flange in an effort to 

eliminate tab scraping. Second, the shaft had a uniform width between the head and the bottom 

end where the bolt was fastened. This change was made to reduce as much as possible the plastic 

section for bending. Third, with one exception, different sheet steel thicknesses were used. An 

example of one of the tabbed brackets from Round 3 is shown in Figure 268. 
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Figure 268. Round 3 Bolted Tabbed Bracket 

14.2.1 Round 3 Design Equations 

Equations were developed to guide the design process as well as to determine the 

dimensions of the prototype tabbed brackets. The dimensions, idealized load orientations, and 

assumed failure locations that were used in the development of the design equations, are shown 

in Figures 269 and 270. 

 
  a) Laterally Loaded     b) Vertically Loaded 

 

Figure 269. Bolted Tabbed Bracket—(a) Laterally Loaded and (b) Vertically Loaded 
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Figure 270. Dimensions and Failure Locations for Bolted Tabbed Bracket 

The Round-1 design equations, which are discussed in Chapter 10, predicted the lateral 

release loads of the crimp-in-place tabbed brackets very well. Thus, the Round-2 equations, 

which are discussed in Chapter 12, were derived in a similar manner. However, the observed 

lateral loads for the second round were lower than the predicted loads by a factor of 

approximately 5/6. This error was probably due to the differing end conditions and the actual 

load distribution being different than what was assumed. The crimp-in-place tabbed brackets in 

the first round were symmetrical and assumed to have simply-supported end conditions. 

However, the lower bolted end of the tabbed brackets in Round 2 was partially fixed, thus 

resulting in the applied load, PH, not being distributed evenly between the two ends, as the 

Round-2 equations had assumed. Thus, it seemed most prudent to modify the round-2 equations 

with a correction factor rather than derive new equations based on different theoretical end 

conditions and other sources of error. 
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As noted previously in Chapter 12, failure location 1 was assumed to be a pure shear 

fracture. In the second round of tabbed bracket tests, the lateral load needed to cause failure at 

location 1 was calculated using Equation 12.1. 

   
 

 

√ 
         (12.1) 

For Round 3, the right side of Equation 12.1 was multiplied by a factor of 5/6 to account for the 

difference in the predicted versus observed lateral loads from the bolted tabbed brackets of 

Round 2, thus resulting in Equation 14.1. 

   
 (

 

 
)

 

√ 
     

  

 √ 
        (14.1) 

  Where  σu = ultimate tensile strength 

    a = length of head (see Figure 270) 

    t = thickness (see Figure 269a) 

 

As noted previously in Chapter 12, failure location 2 was assumed to be a pure tensile 

fracture through the neck. For the Round 2 tabbed bracket tests, the lateral load needed to cause 

failure at location 2 was calculated using Equation 12.2. 

   
            (12.2) 

For Round 3, the right side of Equation 12.2 was multiplied by a factor of 5/6 to account for the 

difference in the predicted versus observed lateral loads from the bolted tabbed brackets of 

Round 2, thus resulting in Equation 14.2. 

   
 (

 

 
)       

 

 
         (14.2) 

  Where  σu = ultimate tensile strength 

    b = width of neck (see Figure 270) 

    t = thickness (see Figure 269a) 
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As noted previously in Chapter 12, failure location 3 was assumed to be a pure tensile 

fracture at the location of the bolt hole. For the Round 2 tabbed bracket tests, the lateral load 

needed to cause failure at location 3 was calculated using Equation 12.3. 

   
                            (12.3) 

For Round 3, the right side of Equation 12.3 was multiplied by a factor of 5/6 to account for the 

difference in the predicted versus observed lateral loads from the bolted tabbed brackets of 

Round 2, thus resulting in Equation 14.3. 
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             (14.3) 

 Where  d = width of bottom tab (see Figure 270) 

   D = diameter of hole (see Figure 270)     

  υ = width reduction when using hole diameter = 1/16 in. (1.6 mm) 

   db = diameter of the bolt 

   μ = width reduction when using bolt diameter = 1/8 in. (3.2 mm) 

   t = thickness (see Figure 269a) 

   σu = ultimate tensile strength 

 

As noted previously in Chapter 12, failure location 4 was assumed to be a tearing failure 

at the bolt hole. For the Round 2 tabbed bracket tests, the lateral load needed to cause failure at 

location 4 was calculated using Equation 12.4. 
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)      (12.4) 

For Round 3, the right side of Equation 12.4 was multiplied by a factor of 5/6 to account for the 

difference in the predicted versus observed lateral loads from the bolted tabbed brackets of 

Round 2, thus resulting in Equation 14.4. 
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  (  

 

 
)      (  

    

 
)      (14.4) 

 Where  f = distance from the center of the bolt hole to the bottom 

    edge of the bolted tabbed bracket (see Figure 270) 

   D =  diameter of the bolt hole (see Figure 270) 

   db =  diameter of the bolt 

   υ =  1/16 in. (1.6 mm) 

   t = thickness (see Figure 269a) 

   σu = ultimate tensile strength 

 

The vertical release was assumed to occur in pure bending. For the third round, a 

dynamic magnification factor of 1.5 was incorporated into the equation for the vertical release 

load. This factor was not used in previous rounds. The moment arm, x, was measured between 

the center of the cable and the mid-plane of the outer bracket, as shown in Figure 269b. The 

vertical load needed to release the cable was calculated using Equation 14.5. 
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)  

 
 

      

  
  (14.5) 

 Where  MP = plastic moment 

   x = moment arm (see Figure 269b) 

   Z = plastic section modulus where bending occurs 

   σy = yield strength 

   b = cross-sectional width where bending occurs (see Figure 270) 

   t = thickness (see Figure 269a) 

 

When calculating the shear and tensile capacities of the Round 3 tabbed brackets, the 

steel strengths were 56 ksi (386 MPa) for the yield strength and 69 ksi (476 MPa) for the 

ultimate tensile strength. The actual strengths can be found on the material testing reports, as 

provided in Appendix E. 

14.2.2 Dimensions and Structural Capacities 

Tabbed bracket Version 5 was fabricated from 12-gauge, grade 50 sheet steel. Using the 

design equations, the predicted lateral and vertical capacities were 3.00 kips (13.3 kN) and 117 lb 

(520 N), respectively. A side view of tabbed bracket Version 5 is shown in Figure 271. A flat 
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pattern of the tabbed bracket is shown in Figure 272. The keyway corresponding to tabbed 

bracket Version 5 is shown in Figure 273. 

 
Figure 271. Side View of Tabbed Bracket Version 5 

 
Figure 272. Flat Pattern of Tabbed Bracket Version 5 
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Figure 273. Tabbed Bracket Version 5 Keyway 

Tabbed bracket Version 6 was fabricated from 14-gauge, grade 50 sheet steel. Using the 

design equations, the predicted lateral and vertical capacities were 4.30 kips (19.1 kN) and 123 lb 

(547 N), respectively. A side view of tabbed bracket Version 6 is shown in Figure 274. A flat 

pattern of the tabbed bracket is shown in Figure 275. The keyway corresponding to tabbed 

bracket Version 6 is shown in Figure 276. 
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Figure 274. Side View of Tabbed Bracket Version 6 

 
Figure 275. Flat Pattern of Tabbed Bracket Version 6 
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Figure 276. Tabbed Bracket Version 6 Keyway 

Tabbed bracket Version 7 was fabricated from 11-gauge, grade 50 sheet steel. Using the 

design equations, the predicted lateral and vertical capacities were 6.02 kips (26.8 kN) and 264 lb 

(1.17 kN) respectively. A side view of tabbed bracket Version 7 is shown in Figure 277. A flat 

pattern of the tabbed bracket is shown in Figure 278. The keyway corresponding to Version 7 is 

shown in Figure 279. 
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Figure 277. Side View of Tabbed Bracket Version 7 

 
Figure 278. Flat Pattern of Tabbed Bracket Version 7 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

323 

 
 

Figure 279. Tabbed Bracket Version 7 Keyway 

Tabbed bracket Version 8 was fabricated from 12-gauge, grade 50 sheet steel. Using the 

design equations, the predicted lateral and vertical capacities were 6.01 kips (26.7 kN) and 235 lb 

(1.05 kN), respectively. A side view of tabbed bracket Version 8 is shown in Figure 280. A flat 

pattern of the tabbed bracket is shown in Figure 281. The keyway corresponding to tabbed 

bracket Version 8 is shown in Figure 282. 
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Figure 280. Side View of Tabbed Bracket Version 8 

 
Figure 281. Flat Pattern of Tabbed Bracket Version 8 
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Figure 282. Tabbed Bracket Version 8 Keyway 

Tabbed bracket Versions 9 and 10 were very similar to Version 8. Similar to Version 8, 

Versions 9 and 10 were fabricated from 12-gauge steel. In fact and according to the design 

equations, they were supposed to have the same vertical and lateral release loads as Version 8. 

The only differences were in the length of the neck and the depth of the narrow part of the 

keyway. If the length of the neck was too long in relation to the depth of the narrow part of the 

keyway, the head would not catch in the keyway when the bracket was pulled laterally. If the 

length of the neck was too short in relation to the depth of the narrow part of the keyway, there 

would be tab scraping against the back of the flange when the bracket was pulled vertically. This 

scraping behavior was clearly seen in the development and testing of the extended keyway bolts, 

as described in Chapter 5. 

The neck of tabbed bracket Version 9 was 1/8 in. (3.2 mm) longer, and the narrow part of 

the keyway was 1/16 in. (1.6 mm) shallower than those of tabbed bracket Version 8. This 
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configuration increased the risk of the head slipping through the keyway—rather than catching in 

it—when the bracket was pulled laterally, but it also increased the likelihood of the head 

releasing through the keyway freely when the bracket was pulled vertically. A side view of 

tabbed bracket Version 9 is shown in Figure 283. A flat pattern of the tabbed bracket is shown in 

Figure 284. The keyway which corresponds to Version 9 is shown in Figure 285. 

 
Figure 283. Side View of Tabbed Bracket Version 9 
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Figure 284. Flat Pattern of Tabbed Bracket Version 9 

 
Figure 285. Tabbed Bracket Version 9 Keyway 
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The neck of tabbed bracket Version 10 was 1/8 in. (3.2 mm) shorter, and the narrow part 

of the keyway was 1/16 in. (1.6 mm) deeper than those of tabbed bracket Version 8. This 

configuration increased the likelihood that the head would catch in the keyway when the bracket 

was pulled laterally, but it also increased the risk of tab scraping against the back of the flange 

when the bracket was pulled vertically. A side view of tabbed bracket Version 10 is shown in 

Figure 286. A flat pattern of the tabbed bracket is shown in Figure 287. The keyway which 

corresponds to Version 10 is shown in Figure 288. 

 
Figure 286. Side View of Tabbed Bracket Version 10 
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Figure 287. Flat Pattern of Tabbed Bracket Version 10 

 
Figure 288. Tabbed Bracket Version 10 Keyway 
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The expected release loads for the bolted tabbed brackets from Round 3 are shown in 

Table 12. 

Table 12. Expected Release Loads for Round 3 Bolted Tabbed Brackets 

Tabbed 

Bracket 

Expected Lateral Release Load 

kips (kN) 
Expected Vertical 

Release Load 

kips (kN) 
Failure 

Location 1 

Failure 

Location 2 

Failure 

Location 3 

Failure 

Location 4 

Version 5 3.47 (15.4) 3.01 (13.4) 3.01 (13.4) 4.51 (20.1) 0.12 (0.53) 

Version 6 4.34 (19.3) 4.30 (19.1) 4.30 (19.1) 4.51 (20.1) 0.12 (0.53) 

Version 7 6.95 (30.9) 6.02 (26.8) 6.02 (26.8) 7.22 (32.1) 0.26 (1.2) 

Version 8 6.08 (27.0) 6.01 (26.7) 6.01 (26.7) 6.32 (28.1) 0.24 (1.1) 

Version 9 6.08 (27.0) 6.01 (26.7) 6.01 (26.7) 6.32 (28.1) 0.24 (1.1) 

Version 10 6.08 (27.0) 6.01 (26.7) 6.01 (26.7) 6.32 (28.1) 0.24 (1.1) 
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15 DYNAMIC COMPONENT TESTS—TABBED BRACKETS, ROUND 3 

15.1 Results 

All of the tabbed brackets were fabricated from hot-rolled, ASTM A1011, HSLA Grade 

50 sheet steel. The tabbed bracket thickness, cross-section width, method of attachment, and the 

mounting post section were varied for the Round 3 tests. The same setup and procedures used to 

test the keyway bolts was also used to test the tabbed brackets. Three rounds of design 

modifications, component testing, and evaluation were made to the tabbed brackets. Eight 

dynamic component tests (test nos. HTTB-1 through HTTB-8) were performed in the first round, 

as discussed in Chapters 10 and 11. Ten dynamic component tests (test nos. HTTB-9 through 

HTTB-16, including test nos. HTTB-9R and HTTB-12R) were performed in the second round, 

as discussed in Chapters 12 and 13. Twenty-four dynamic component tests (test nos. HTTB-17 

through HTTB-40) were performed in the third round and are presented in Chapters 14 and 15. 

Each individual concept was tested twice in its vertical orientation and twice in its lateral 

orientation in order to determine the structural capacities and cable release behaviors. For the 

sake of convenience, the consolidated drawing sets for all three rounds of dynamic component 

testing on tabbed brackets is shown in Figures 164 through 203, as provided in Chapter 11. The 

test matrix and results for the third round of tests on the bolted tabbed brackets are summarized 

in Table 13. 
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Table 13. Summary of Dynamic Component Testing on Bolted Tabbed Brackets, Round 3 

Test No. 
Load 

Direction 

Tabbed 

Bracket 
Gauge Post Section 

Expected 

Strength, 

kips (kN) 

Release 

Load, 

kips (kN) 

Test Result 

HTTB-17 Vertical 
Version 5, 

Bolted, e1 
12 

C-section, 

V5, e2 

0.12 

(0.53) 

0.12 

(0.53) 

Free release through keyway, snag load = 

0.13 kips (0.57 kN) 

HTTB-18 Vertical 
Version 5, 

Bolted, e1 
12 

C-section, 

V5, e2 

0.12 

(0.53) 

0.15 

(0.67) 

Release through keyway, small amount of 

contact between tab and side of keyway, 

snag load = 0.10 kips (0.46 kN) 

HTTB-19 Vertical 
Version 8, 

Bolted, h1 
12 

C-section, 

V6/8, f2 

0.24 

(1.1) 

0.24 

(1.1) 

Free release through keyway, snag load = 

0.41 kips (1.8 kN) 

HTTB-20 Vertical 
Version 8, 

Bolted, h1 
12 

C-section, 

V6/8, f2 

0.24 

(1.1) 

0.28 

(1.2) 

Free release through keyway, snag load = 

0.36 kips (1.6 kN) 

HTTB-21 Lateral 
Version 8, 

Bolted, h1 
12 

C-section, 

V6/8, f2 

6.01 

(26.7) 

5.71 

(25.4) 

No high-speed video, tabs caught in 

narrow part of keyway, tabs sheared off 

(Failure Location 1) , cracking at bolt 

hole (Failure Location 3) 

HTTB-22 Lateral 
Version 8, 

Bolted, h1 
12 

C-section, 

V6/8, f2 

6.01 

(26.7) 

5.59 

(24.9) 

Tabs caught in narrow part of keyway, 

tabs sheared off and bent (resembles 

Failure Location 1), yielding at bolt hole 

HTTB-23 Lateral 
Version 5, 

Bolted, e1 
12 

C-section, 

V5, e2 

3.00 

(13.3) 

3.06 

(13.6) 

Tabs caught in narrow part of keyway, 

fracture through narrow part of bracket 

(Failure Location 2) 

HTTB-24 Lateral 
Version 5, 

Bolted, e1 
12 

C-section, 

V5, e2 

3.00 

(13.3) 

2.97 

(13.2) 

Tabs caught in narrow part of keyway, 

fracture through narrow part of bracket 

(Failure Location 2) 

HTTB-25 Lateral 
Version 6, 

Bolted, f1 
14 

C-section, 

V6/8, f2 

4.30 

(19.1) 

3.50 

(15.6) 

Tabs caught in narrow part of keyway, 

Cracks formed and tabs bent inward 

(resembles Failure Location 1) 
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Table 13. Summary of Dynamic Component Testing on Bolted Tabbed Brackets, Round 3 (Continued) 

Test No. 
Load 

Direction 

Tabbed 

Bracket 
Gauge Post Section 

Expected 

Strength 

kips (kN) 

Release 

Load 

kips (kN) 

Test Result 

HTTB-26 Lateral 
Version 6, 

Bolted, f1 
14 

C-section, 

V6/8, f2 

4.30 

(19.1) 

3.44 

(15.3) 

Tabs caught in narrow part of keyway, 

Cracks formed and tabs bent inward 

(resembles Failure Location 1) 

HTTB-27 Lateral 
Version 7, 

Bolted, g1 
11 

C-section, 

V7, g2 

6.02 

(26.8) 

4.04 

(18.0) 

Tabs caught in narrow part of keyway, 

corner of one tab sheared off and head 

twisted and slipped through narrow part 

of the keyway 

HTTB-28 Lateral 
Version 7, 

Bolted, g1 
11 

C-section, 

V7, g2 

6.02 

(26.8) 

4.88 

(21.7) 

Tabs caught in narrow part of keyway, 

corner of one tab sheared off and head 

twisted and slipped through narrow part 

of the keyway 

HTTB-29 Lateral 
Version 9, 

Bolted, i1 
12 

C-section, 

V9, i2 

6.01 

(26.7) 

0.77 

(3.4) 

Tabs failed to catch in narrow part of 

keyway, free release through keyway 

HTTB-30 Lateral 
Version 9, 

Bolted, i1 
12 

C-section, 

V9, i2 

6.01 

(26.7) 

0.44 

(2.0) 

Tabs failed to catch in narrow part of 

keyway, free release through keyway 

HTTB-31 Lateral 
Version 10, 

Bolted, j1 
12 

C-section, 

V10, j2 

6.01 

(26.7) 

6.03 

(26.8) 

Tabs caught in narrow part of keyway, 

fracture at bolt hole (Failure Location 3) 

HTTB-32 Lateral 
Version 10, 

Bolted, j1 
12 

C-section, 

V10, j2 

6.01 

(26.7) 

6.17 

(27.4) 

Tabs caught in narrow part of keyway, 

fracture through narrow part of bracket 

(Failure Location 2), cracking at bolt 

hole (Failure Location 3) 

HTTB-33 Vertical 
Version 6, 

Bolted, f1 
14 

C-section, 

V6/8, f2 

0.12 

(0.53) 
NA 

Load cell data unusable, edge of tab 

snagged on side of keyway as it released 

through the keyway 

HTTB-34 Vertical 
Version 6, 

Bolted, f1 
14 

C-section, 

V6/8, f2 

0.12 

(0.53) 
NA 

Load cell data unusable, edge of tab 

snagged on side of keyway as it released 

through the keyway 
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Table 13. Summary of Dynamic Component Testing on Bolted Tabbed Brackets, Round 3 (Continued) 

Test No. 
Load 

Direction 

Tabbed 

Bracket 
Gauge Post Section 

Expected 

Strength, 

kips (kN) 

Release 

Load, 

kips (kN) 

Test Result 

HTTB-35 Vertical 
Version 7, 

Bolted, g1 
11 

C-section, 

V7, g2 

0.26 

(1.2) 

0.46 

(2.0) 

Edge of tab snagged on side of keyway 

as the head released through, cable snag 

load = 0.47 kips (2.1 kN)  

HTTB-36 Vertical 
Version 7, 

Bolted, g1 
11 

C-section, 

V7, g2 

0.26 

(1.2) 

0.31 

(1.4) 

Edge of tab rubbed against side of 

keyway as the head released through, 

snag load = 0.65 kips (2.9 kN) 

HTTB-37 Vertical 
Version 10, 

Bolted, j1 
12 

C-section, 

V10, j2 

0.24 

(1.1) 

0.42 

(1.9) 

Edge of tab rubbed against side of 

keyway as the head released through, 

snag load = 0.53 kips (2.4 kN) 

HTTB-38 Vertical 
Version 10, 

Bolted, j1 
12 

C-section, 

V10, j2 

0.24 

(1.1) 

0.27 

(1.2) 

Edge of tab rubbed against side of 

keyway as the head released through, 

snag load = 0.46 kips (2.0 kN) 

HTTB-39 Vertical 
Version 6, 

Bolted, f1 
14 

C-section, 

V6/8, f2 

0.12 

(0.53) 

0.12 

(0.53) 

Edge of tab rubbed against side of 

keyway as the head released through, 

snag load = 0.20 kips (0.91 kN) 

HTTB-40 Vertical 
Version 6, 

Bolted, f1 
14 

C-section, 

V6/8, f2 

0.12 

(0.53) 
NA 

Load cell data unusable, no high-speed 

video 
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15.1.1 Test No. HTTB-17 (TB V5, Bolted, Vertical) 

For test no. HTTB-17, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 5 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, fabricated from 

7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the keyway, while the 

bottom end was secured to the flange with a ¼-in. (6-mm), grade 5, hex cap screw and nut. The 

bracket began to bend as the cable began to pull on it. As the bracket bent, the head rotated out of 

the keyway freely with a maximum release load of 122 lb (543 N). A peak load of 128 lb (569 

N) occurred as the cable became snagged on the head, after the tab had already cleared the 

keyway. The force versus time plot is shown in Figure 289. Pre- and post-test photographs are 

shown in Figure 290. Sequential photographs are shown in Figure 291. 
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Figure 289. Force-Time Data, Test No. HTTB-17 
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Figure 290. Pre-Test and Post-Test Photographs, Test No. HTTB-17 

 

  
  Time = 0 sec     Time = 0.212 sec 

 

  
  Time = 0.246 sec   Time = 0.264 sec, Release 

 

Figure 291. Sequential Photographs, Test No. HTTB-17 
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15.1.2 Test No. HTTB-18 (TB V5, Bolted, Vertical) 

For test no. HTTB-18, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 5 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, fabricated from 

7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the keyway, while the 

bottom end was secured to the flange with a ¼-in. (6-mm), grade 5, hex cap screw and nut. The 

bracket began to bend as the cable began to pull on it. As the bracket bent, the head rotated out of 

the keyway. There was a small amount of contact between the tab and the side of the keyway 

before the head rotated through completely. A peak load of 148 lb (658 N) occurred as the 

bracket bent and the head rotated out of the keyway. A small snag load of 103 lb (458 N) 

occurred after the head cleared the keyway. The force versus time plot is shown in Figure 292. 

Pre- and post-test photographs are shown in Figure 293. Sequential photographs are shown in 

Figure 294. 
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Figure 292. Force-Time Data, Test No. HTTB-18 
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Figure 293. Pre-Test and Post-Test Photographs, Test No. HTTB-18 

  
  Time = 0 sec     Time = 0.244 sec 

 

  
  Time = 0.258 sec   Time = 0.274 sec, Release 

 

Figure 294. Sequential Photographs, Test No. HTTB-18 
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15.1.3 Test No. HTTB-19 (TB V5, Bolted, Vertical) 

For test no. HTTB-19, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 8 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, fabricated from 

7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the keyway, while the 

bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. 

The bracket began to bend as the cable began to pull on it. As the bracket bent, the head rotated 

out of the keyway freely with a maximum release load of 239 lb (1.06 kN). A peak load of 406 lb 

(1.81 kN) occurred as the cable became snagged on the head, after it had already cleared the 

keyway. The force versus time plot is shown in Figure 295. Pre- and post-test photographs are 

shown in Figure 296. Sequential photographs are shown in Figure 297. 
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Figure 295. Force-Time Data, Test No. HTTB-19 
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Figure 296. Pre-Test and Post-Test Photographs, Test No. HTTB-19 

 

  
  Time = 0 sec     Time = 0.242 sec 

 

  
  Time = 0.260 sec   Time = 0.270 sec, Release 

 

Figure 297. Sequential Photographs, Test No. HTTB-19 
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15.1.4 Test No. HTTB-20 (TB V8, Bolted, Vertical) 

For test no. HTTB-20, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 8 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, fabricated from 

7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the keyway, while the 

bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. 

The bracket began to bend as the cable began to pull on it. As the bracket bent, the head rotated 

out of the keyway freely with a maximum release load of 283 lb (1.26 kN). A peak load of 362 lb 

(1.61 kN) occurred as the cable became snagged on the head, after it had already cleared the 

keyway. The force versus time plot is shown in Figure 298. Pre- and post-test photographs are 

shown in Figure 299. Sequential photographs are shown in Figure 300. 
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Figure 298. Force-Time Data, Test No. HTTB-20 
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Figure 299. Pre-Test and Post-Test Photographs, Test No. HTTB-20 

  
  Time = 0 sec     Time = 0.132 sec 

 

  
  Time = 0.140 sec   Time = 0.152 sec, Release 

 

Figure 300. Sequential Photographs, Test No. HTTB-20 
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15.1.5 Test No. HTTB-21 (TB V8, Bolted, Lateral) 

For test no. HTTB-21, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 8 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head became caught in the narrow 

part of the keyway. The cable continued to pull until the tabs were sheared off (failure location 

1). There was also significant cracking at the location of the bolt hole, indicating that tensile 

fracture (failure location 3) was imminent at that location. A peak load of 5.71 kips (25.4 kN) 

occurred as the head was pulled against the inside of the keyway, just before shear failure. Due 

to technical difficulties, there was no high-speed video, but the standard speed video was useful 

nonetheless. The force versus time plot is shown in Figure 301. Pre- and post-test photographs 

are shown in Figure 302. Sequential photographs are shown in Figure 303. 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

348 

 
Figure 301. Force-Time Data, Test No. HTTB-21 
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Figure 302. Pre-Test and Post-Test Photographs, Test No. HTTB-21 

  
  Time = 0 sec     Time = 0.222 sec 

 

  
  Time = 0.326 sec   Time = 0.360 sec, Release 

 

Figure 303. Sequential Photographs, Test No. HTTB-21 
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15.1.6 Test No. HTTB-22 (TB V8, Bolted, Lateral) 

For test no. HTTB-22, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 8 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head became caught in the narrow 

part of the keyway. The cable continued to pull until cracks began to form along the shear planes 

of the tabs. As the cracks grew, the entire head bent out of plane, until slipping through the 

keyway (failure location 1). There was also yielding of the steel at the location of the bolt hole, 

indicating that tensile fracture (failure location 3) was imminent at that location. A peak load of 

5.59 kips (24.9 kN) occurred as the head was pulled against the inside of the keyway, just before 

shear failure. The force versus time plot is shown in Figure 304. Pre- and post-test photographs 

are shown in Figure 305. Sequential photographs are shown in Figure 306. 
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Figure 304. Force-Time Data, Test No. HTTB-22 
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Figure 305. Pre-Test and Post-Test Photographs, Test No. HTTB-22 

  
  Time = 0 sec     Time = 0.188 sec 

 

  
  Time = 0.286 sec   Time = 0.296 sec, Release 

 

Figure 306. Sequential Photographs, Test No. HTTB-22 
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15.1.7 Test No. HTTB-23 (TB V5, Bolted, Lateral) 

For test no. HTTB-23, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 5 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a ¼-in. (6-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head became caught in the narrow 

part of the keyway. The cable continued to pull until fracture occurred through the narrow part of 

the bracket (failure location 2). A peak load of 3.06 kips (13.6 kN) occurred as the head was 

pulled against the inside of the keyway, just before fracture. The force versus time plot is shown 

in Figure 307. Pre- and post-test photographs are shown in Figure 308. Sequential photographs 

are shown in Figure 309. 
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Figure 307. Force-Time Data, Test No. HTTB-23 
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Figure 308. Pre-Test and Post-Test Photographs, Test No. HTTB-23 

  
  Time = 0 sec     Time = 0.302 sec 

 

  
  Time = 0.380 sec   Time = 0.386 sec, Release 

 

Figure 309. Sequential Photographs, Test No. HTTB-23 
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15.1.8 Test No. HTTB-24 (TB V5, Bolted, Lateral) 

For test no. HTTB-24, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 5 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a ¼-in. (6-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head became caught in the narrow 

part of the keyway. The cable continued to pull until fracture occurred through the narrow part of 

the bracket (failure location 2). A peak load of 2.97 kips (13.2 kN) occurred as the head was 

pulled against the inside of the keyway, just before fracture. The force versus time plot is shown 

in Figure 310. Pre- and post-test photographs are shown in Figure 311. Sequential photographs 

are shown in Figure 312. 
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Figure 310. Force-Time Data, Test No. HTTB-24 
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Figure 311. Pre-Test and Post-Test Photographs, Test No. HTTB-24 

  
  Time = 0 sec     Time = 0.114 sec 

 

  
  Time = 0.280 sec   Time = 0.284 sec, Release 

 

Figure 312. Sequential Photographs, Test No. HTTB-24 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

359 

15.1.9 Test No. HTTB-25 (TB V6, Bolted, Lateral) 

For test no. HTTB-25, the cable pulled on the 14-gauge, grade 50 steel, bolted tabbed 

bracket Version 6 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head became caught in the narrow 

part of the keyway. The cable continued to pull until cracks began to form along the shear planes 

of the tabs. As the cracks grew, the entire head bent out of plane, until slipping through the 

keyway (failure location 1). There was also yielding of the steel at the location of the bolt hole, 

indicating that tensile fracture (failure location 3) was imminent at that location. A peak load of 

3.50 kips (15.6 kN) occurred as the head was pulled against the inside of the keyway, just before 

shear failure. The force versus time plot is shown in Figure 313. Pre- and post-test photographs 

are shown in Figure 314. Sequential photographs are shown in Figure 315. 
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Figure 313. Force-Time Data, Test No. HTTB-25 
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Figure 314. Pre-Test and Post-Test Photographs, Test No. HTTB-25 

  
  Time = 0 sec     Time = 0.222 sec 

 

  
  Time = 0.364 sec   Time = 0.376 sec, Release 

 

Figure 315. Sequential Photographs, Test No. HTTB-25 
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15.1.10 Test No. HTTB-26 (TB V6, Bolted, Lateral) 

For test no. HTTB-26, the cable pulled on the 14-gauge, grade 50 steel, bolted tabbed 

bracket Version 6 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head became caught in the narrow 

part of the keyway. The cable continued to pull until cracks began to form along the shear planes 

of the tabs. As the cracks grew, the entire head bent out of plane, until slipping through the 

keyway (failure location 1). There was also yielding of the steel at the location of the bolt hole, 

indicating that tensile fracture (failure location 3) was imminent at that location. A peak load of 

3.44 kips (15.3 kN) occurred as the head was pulled against the inside of the keyway, just before 

shear failure. The force versus time plot is shown in Figure 316. Pre- and post-test photographs 

are shown in Figure 317. Sequential photographs are shown in Figure 318. 
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Figure 316. Force-Time Data, Test No. HTTB-26 
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Figure 317. Pre-Test and Post-Test Photographs, Test No. HTTB-26 

  
  Time = 0 sec     Time = 0.200 sec 

 

  
  Time = 0.336 sec   Time = 0.346 sec, Release 

 

Figure 318. Sequential Photographs, Test No. HTTB-26 
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15.1.11 Test No. HTTB-27 (TB V7, Bolted, Lateral) 

For test no. HTTB-27, the cable pulled on the 11-gauge, grade 50 steel, bolted tabbed 

bracket Version 7 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head became caught in the narrow 

part of the keyway. The cable continued to pull until the corner of one of the tabs sheared off. As 

this happened, the bracket began to twist, allowing the head to slip through the narrow part of the 

keyway. This type of failure was not anticipated. A peak load of 4.04 kips (18.0 kN) occurred as 

the head was pulled against the inside of the keyway, just before the corner of the one tab 

sheared off. The force versus time plot is shown in Figure 319. Pre- and post-test photographs 

are shown in Figure 320. Sequential photographs are shown in Figure 321. 
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Figure 319. Force-Time Data, Test No. HTTB-27 
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Figure 320. Pre-Test and Post-Test Photographs, Test No. HTTB-27 

  
  Time = 0 sec     Time = 0.196 sec 

 

  
  Time = 0.302 sec   Time = 0.314 sec, Release 

 

Figure 321. Sequential Photographs, Test No. HTTB-27 
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15.1.12 Test No. HTTB-28 (TB V7, Bolted, Lateral) 

For test no. HTTB-28, the cable pulled on the 11-gauge, grade 50 steel, bolted tabbed 

bracket Version 7 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head became caught in the narrow 

part of the keyway. The cable continued to pull until the corner of one of the tabs sheared off. As 

this happened, the bracket began to twist, allowing the head to slip through the narrow part of the 

keyway. This type of failure was not anticipated. A peak load of 4.88 kips (21.7 kN) occurred as 

the head was pulled against the inside of the keyway, just before the corner of the one tab 

sheared off. The force versus time plot is shown in Figure 322. Pre- and post-test photographs 

are shown in Figure 323. Sequential photographs are shown in Figure 324. 
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Figure 322. Force-Time Data, Test No. HTTB-28 
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Figure 323. Pre-Test and Post-Test Photographs, Test No. HTTB-28 

  
  Time = 0 sec     Time = 0.238 sec 

 

  
  Time = 0.334 sec   Time = 0.344 sec, Release 

 

Figure 324. Sequential Photographs, Test No. HTTB-28 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

371 

15.1.13 Test No. HTTB-29 (TB V9, Bolted, Lateral) 

For test no. HTTB-29, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 9 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head was not caught in the narrow 

part of the keyway. Instead of becoming caught in the narrow part of the keyway, the head 

released through the wide part freely. A peak load of 768 lb (3.42 kN) occurred as the bracket 

bent straight out by the cable. The force versus time plot is shown in Figure 325. Pre- and post-

test photographs are shown in Figure 326. Sequential photographs are shown in Figure 327. 
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Figure 325. Force-Time Data, Test No. HTTB-29 
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Figure 326. Pre-Test and Post-Test Photographs, Test No. HTTB-29 

  
  Time = 0 sec     Time = 0.088 sec 

 

  
  Time = 0.112 sec   Time = 0.146 sec, Release 

 

Figure 327. Sequential Photographs, Test No. HTTB-29 
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15.1.14 Test No. HTTB-30 (TB V9, Bolted, Lateral) 

For test no. HTTB-30, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 9 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head was not caught in the narrow 

part of the keyway. Instead of becoming caught in the narrow part of the keyway, the head 

released through the wide part freely. A peak load of 437 lb (1.94 kN) occurred as the bracket 

bent straight out by the cable. The force versus time plot is shown in Figure 328. Pre- and post-

test photographs are shown in Figure 329. Sequential photographs are shown in Figure 330. 
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Figure 328. Force-Time Data, Test No. HTTB-30 
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Figure 329. Pre-Test and Post-Test Photographs, Test No. HTTB-30 

  
  Time = 0 sec     Time = 0.302 sec 

 

  
  Time = 0.344 sec   Time = 0.406 sec, Release 

 

Figure 330. Sequential Photographs, Test No. HTTB-30 
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15.1.15 Test No. HTTB-31 (TB V10, Bolted, Lateral) 

For test no. HTTB-31, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 10 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a ¼-in. (6-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head became caught in the narrow 

part of the keyway. The cable continued to pull until fracture occurred through the cross-section 

where the bolt hole was located (failure location 3). A peak load of 6.03 kips (26.8 kN) occurred 

as the head was pulled against the inside of the keyway, just before fracture. The force versus 

time plot is shown in Figure 331. Pre- and post-test photographs are shown in Figure 332. 

Sequential photographs are shown in Figure 333. 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

378 

 
Figure 331. Force-Time Data, Test No. HTTB-31 

-1

0

1

2

3

4

5

6

7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
o

rc
e
 (

k
ip

s
)

Time (sec)

CFC 60 Load - Extracted 

  CFC 60 LOAD

HTTB-31



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

379 

  
Figure 332. Pre-Test and Post-Test Photographs, Test No. HTTB-31 

  
  Time = 0 sec     Time = 0.222 sec 

 

  
  Time = 0.352 sec   Time = 0.358 sec, Release 

 

Figure 333. Sequential Photographs, Test No. HTTB-31 
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15.1.16 Test No. HTTB-32 (TB V10, Bolted, Lateral) 

For test no. HTTB-32, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 10 at an angle of 90 degrees, perpendicular to the front face of the flange, thus 

imparting a lateral load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a ¼-in. (6-mm), grade 5, hex cap 

screw and nut. As the cable began to pull on the bracket, the head became caught in the narrow 

part of the keyway. The cable continued to pull until fracture occurred through the narrow part of 

the bracket (failure location 2). There was also significant cracking of the cross-section at the 

location of the bolt hole, indicating that tensile fracture (failure location 3) was imminent at that 

location. A peak load of 6.17 kips (27.4 kN) occurred as the head was pulled against the inside of 

the keyway, just before fracture. Significant cracking occurred at the location of the bolt hole as 

well, indicating that tensile failure was imminent at that location. The force versus time plot is 

shown in Figure 334. Pre- and post-test photographs are shown in Figure 335. Sequential 

photographs are shown in Figure 336. 
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Figure 334. Force-Time Data, Test No. HTTB-32 
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Figure 335. Pre-Test and Post-Test Photographs, Test No. HTTB-32 

  
  Time = 0 sec     Time = 0.218 sec 

 

  
  Time = 0.342 sec   Time = 0.350 sec, Release 

 

Figure 336. Sequential Photographs, Test No. HTTB-32 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

383 

15.1.17 Test No. HTTB-33 (TB V6, Bolted, Vertical) 

For test no. HTTB-33, the cable pulled on the 14-gauge, grade 50 steel, bolted tabbed 

bracket Version 6 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, fabricated from 

7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the keyway, while the 

bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. 

The bracket began to bend as the cable began to pull on it. As the bracket bent, the edge of one 

of the tabs snagged the side of the keyway before the head finally released through it. The load 

cell data was not usable. Therefore, the peak forces were not known. Pre- and post-test 

photographs are shown in Figure 337. Sequential photographs are shown in Figure 338. 
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Figure 337. Pre-Test and Post-Test Photographs, Test No. HTTB-33 

  
  Time = 0 sec     Time = 0.178 sec 

 

  
  Time = 0.198 sec   Time = 0.218 sec, Release 

 

Figure 338. Sequential Photographs, Test No. HTTB-33 
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15.1.18 Test No. HTTB-34 (TB V6, Bolted, Vertical) 

For test no. HTTB-34, the cable pulled on the 14-gauge, grade 50 steel, bolted tabbed 

bracket Version 6 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, fabricated from 

7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the keyway, while the 

bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. 

The bracket began to bend as the cable began to pull on it. As the bracket bent, the edge of one 

of the tabs snagged the side of the keyway before the head finally released through it. The load 

cell data was not usable. Therefore, the peak forces were not known. Pre- and post-test 

photographs are shown in Figure 339. Sequential photographs are shown in Figure 340. 
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Figure 339. Pre-Test and Post-Test Photographs, Test No. HTTB-34 

  
  Time = 0 sec     Time = 0.144 sec 

 

  
  Time = 0.166 sec   Time = 0.190 sec, Release 

 

Figure 340. Sequential Photographs, Test No. HTTB-34 
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15.1.19 Test No. HTTB-35 (TB V7, Bolted, Vertical) 

For test no. HTTB-35, the cable pulled on the 11-gauge, grade 50 steel, bolted tabbed 

bracket Version 7 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, fabricated from 

7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the keyway, while the 

bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. 

The bracket began to bend as the cable began to pull on it. As the bracket bent, the edge of one 

of the tabs snagged the side of the keyway before the head finally released through it. A 

maximum release load of 464 lb (2.06 kN) occurred as the tab snagged the side of the keyway 

while the head was releasing through it. A snag load of 465 lb (2.07 kN) occurred after the head 

cleared the keyway and as the cable snagged on the tabs. The force versus time plot is shown in 

Figure 341. Pre- and post-test photographs are shown in Figure 342. Sequential photographs are 

shown in Figure 343. 
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Figure 341. Force-Time Data, Test No. HTTB-35 
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Figure 342. Pre-Test and Post-Test Photographs, Test No. HTTB-35 

  
  Time = 0 sec     Time = 0.312 sec 

 

  
  Time = 0.330 sec   Time = 0.352 sec, Release 

 

Figure 343. Sequential Photographs, Test No. HTTB-35 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

390 

15.1.20 Test No. HTTB-36 (TB V7, Bolted, Vertical) 

For test no. HTTB-36, the cable pulled on the 11-gauge, grade 50 steel, bolted tabbed 

bracket Version 7 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, fabricated from 

7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the keyway, while the 

bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. 

The bracket began to bend as the cable began to pull on it. As the bracket bent, the edge of one 

of the tabs rubbed against—but was not snagged on—the side of the keyway. The head released 

through the keyway relatively freely. A maximum release load of 309 lb (1.37 kN) occurred as 

the bracket was bending and the head was releasing through the keyway. A snag load of 654 lb 

(2.91 kN) occurred after the head cleared the keyway and as the cable snagged on the tabs. The 

force versus time plot is shown in Figure 344. Pre- and post-test photographs are shown in 

Figure 345. Sequential photographs are shown in Figure 346. 
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Figure 344. Force-Time Data, Test No. HTTB-36 
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Figure 345. Pre-Test and Post-Test Photographs, Test No. HTTB-36 

  
  Time = 0 sec     Time = 0.042 sec 

 

  
  Time = 0.080 sec   Time = 0.096 sec, Release 

 

Figure 346. Sequential Photographs, Test No. HTTB-36 
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15.1.21 Test No. HTTB-37 (TB V10, Bolted, Vertical) 

For test no. HTTB-37, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 10 at an angle of 0 degrees, parallel to the front face of the flange, thus 

imparting a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap 

screw and nut. The bracket began to bend as the cable began to pull on it. As the bracket bent, 

the edge of one of the tabs rubbed against—but was not snagged on—the side of the keyway. 

The head released through the keyway relatively freely. A maximum release load of 419 lb (1.86 

kN) occurred as the bracket was bending and the head was releasing through the keyway. A snag 

load of 528 lb (2.35 kN) occurred after the head cleared the keyway and as the cable snagged on 

the tabs. The force versus time plot is shown in Figure 347. Pre- and post-test photographs are 

shown in Figure 348. Sequential photographs are shown in Figure 349. 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

394 

 
Figure 347. Force-Time Data, Test No. HTTB-37 
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Figure 348. Pre-Test and Post-Test Photographs, Test No. HTTB-37 

  
  Time = 0 sec     Time = 0.240 sec 

 

  
  Time = 0.260 sec   Time = 0.276 sec, Release 

 

Figure 349. Sequential Photographs, Test No. HTTB-37 
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15.1.22 Test No. HTTB-38 (TB V10, Bolted, Vertical) 

For test no. HTTB-38, the cable pulled on the 12-gauge, grade 50 steel, bolted tabbed 

bracket Version 10 at an angle of 0 degrees, parallel to the front face of the flange, thus 

imparting a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, 

fabricated from 7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the 

keyway, while the bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap 

screw and nut. The bracket began to bend as the cable began to pull on it. As the bracket bent, 

the edge of one of the tabs rubbed against—but was not snagged on—the side of the keyway. 

The head released through the keyway relatively freely. A maximum release load of 272 lb (1.21 

kN) occurred as the bracket was bending and the head was releasing through the keyway. A snag 

load of 458 lb (2.04 kN) occurred after the head cleared the keyway, as the cable snagged on the 

tabs. The force versus time plot is shown in Figure 344. Pre- and post-test photographs are 

shown in Figure 345. Sequential photographs are shown in Figure 346. 
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Figure 350. Force-Time Data, Test No. HTTB-38 
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Figure 351. Pre-Test and Post-Test Photographs, Test No. HTTB-38 

  
  Time = 0 sec     Time = 0.052 sec 

 

  
  Time = 0.066 sec   Time = 0.080 sec, Release 

 

Figure 352. Sequential Photographs, Test No. HTTB-38 
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15.1.23 Test No. HTTB-39 (TB V6, Bolted, Vertical) 

Test no. HTTB-39 was a re-trial of test no. HTTB-33; since, the data was not usable for 

that test. For test no. HTTB-39, the cable pulled on the 14-gauge, grade 50 steel, bolted tabbed 

bracket Version 6 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, fabricated from 

7-gauge, grade 50 sheet steel. The top end of the tabbed bracket rested in the keyway, while the 

bottom end was secured to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. 

The bracket began to bend as the cable began to pull on it. As the bracket bent, the edge of one 

of the tabs rubbed against—but was not snagged on—the side of the keyway. The head released 

through the keyway relatively freely. A maximum release load of 124 lb (552 N) occurred as the 

bracket was bending and the head was releasing through the keyway. A snag load of 204 lb (907 

N) occurred after the head cleared the keyway, as the cable snagged on the tabs. The force versus 

time plot is shown in Figure 353. Pre- and post-test photographs are shown in Figure 354. 

Sequential photographs are shown in Figure 355. 
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Figure 353. Force-Time Data, Test No. HTTB-39 
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Figure 354. Pre-Test and Post-Test Photographs, Test No. HTTB-39 

  
  Time = 0 sec     Time = 0.248 sec 

 

  
  Time = 0.262 sec   Time = 0.282 sec, Release 

 

Figure 355. Sequential Photographs, Test No. HTTB-39 
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15.1.24 Test No. HTTB-40 (TB V6, Bolted, Vertical) 

Test no. HTTB-40 was a re-trial of test no. HTTB-34; since, the data was not usable for 

that test. For test no. HTTB-40, the cable pulled on the 14-gauge, grade 50 steel, bolted tabbed 

bracket Version 6 at an angle of 0 degrees, parallel to the front face of the flange, thus imparting 

a vertical load. The post consisted of a 5-½-in. (140-mm) long, folded C-section, fabricated from 

7-gauge, grade 50 sheet steel. The head rested in the keyway, while the bottom end was secured 

to the flange with a 5/16-in. (8-mm), grade 5, hex cap screw and nut. Due to technical 

difficulties, there was no high-speed video for this test. From the standard speed video, it was 

clear that the head released through the keyway as the cable pulled on the bracket. The load cell 

data was not usable. Therefore, the peak loads were not known. Pre- and post-test photographs 

are shown in Figure 356. Sequential photographs are shown in Figure 357. 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

403 

  
Figure 356. Pre-Test and Post-Test Photographs, Test No. HTTB-40 

  
  Time = 0 sec     Time = 0.172 sec 

 

  
  Time = 0.206 sec   Time = 0.240 sec, Release 

 

Figure 357. Sequential Photographs, Test No. HTTB-40 
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15.2 Discussion 

Twenty-four dynamic component tests were performed in Round 3. One of the main 

goals was to determine whether the bolted tabbed brackets exhibited ideal cable release behavior. 

When pulled laterally, the head was expected to become caught in the narrow part of the keyway, 

and the tabbed bracket was expected to fracture in some manner. When pulled vertically, the 

tabbed bracket was expected to bend upward, allowing the head to rotate up and out of the wider 

part of the keyway without scraping against the inside of the flange. With the exception of 

Versions 7 and 9, all of the bolted tabbed brackets in the third round of testing exhibited ideal 

behavior. 

For both lateral pull tests on tabbed bracket Version 7 (test nos. HTTB-27 and HTTB-

28), its head became caught in the narrow part of the keyway. However, as the cable continued to 

pull laterally, the head began to twist and slip through the narrow part of the keyway, shearing 

off the corner of one of the tabs. Ideally, both tabs would have been completely sheared off. The 

head-twisting did not allow the full fracture strength to be developed. This behavior was 

interesting, but due to the success of the other tabbed bracket versions in this round, it was not 

deemed worthy of further investigation. 

For both lateral pull tests on tabbed bracket Version 9 (test nos. HTTB-29 and HTTB-

30), the head failed to be captured in the narrow part of the keyway and instead freely released 

through the wider part of the keyway. Actually, this behavior was somewhat expected. For 

tabbed bracket Version 9, the narrow part of the keyway was shallower and the head extended 

farther past the inside of the flange than used in any other tabbed bracket. After observing this 

behavior, it was decided to not vertically test tabbed bracket Version 9. 

For the bolted tabbed brackets that behaved ideally, the design equations predicted the 

lateral release loads very well, as shown in Table 14. 
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Table 14. Expected vs. Observed Lateral Release Loads for Ideal Bolted Tabbed Brackets 

Tabbed 

Bracket 

Version 

Test 

No. 

HTTB- 

Lateral Release Load, kips (kN) Actual 

Failure 

Location 

Expected at Failure Location 
Observed 

1 2 3 4 

5 

23 
3.47 

(15.4) 

3.01 

(13.4) 

3.01 

(13.4) 

4.51 

(20.1) 

3.06 

(13.6) 
2 

24 
3.47 

(15.4) 

3.01 

(13.4) 

3.01 

(13.4) 

4.51 

(20.1) 

2.97 

(13.2) 
2 

6 

25 
4.34 

(19.3) 

4.30 

(19.1) 

4.30 

(19.1) 

4.51 

(20.1) 

3.50 

(15.6) 
1 

26 
4.34 

(19.3) 

4.30 

(19.1) 

4.30 

(19.1) 

4.51 

(20.1) 

3.44 

(15.3) 
1 

8 

21 
6.08 

(27.0) 

6.01 

(26.8) 

6.01 

(26.8) 

6.32 

(28.1) 

5.71 

(25.4) 
1 

22 
6.08 

(27.0) 

6.01 

(26.8) 

6.01 

(26.8) 

6.32 

(28.1) 

5.59 

(24.9) 
1 

10 

31 
6.08 

(27.0) 

6.01 

(26.8) 

6.01 

(26.8) 

6.32 

(28.1) 

6.03 

(26.8) 
3 

32 
6.08 

(27.0) 

6.01 

(26.8) 

6.01 

(26.8) 

6.32 

(28.1) 

6.17 

(27.4) 
2 

*Red highlighted cells show the expected release load corresponding to the actual failure 

location. 

*Blue highlighted cells show observed lateral release loads which were greater than or deemed 

“close enough” to the 6-kip (27-kN) target 

 

The design equations worked especially well when fracture occurred at failure locations 2 

or 3, both of which assumed pure tensile fracture. However, the design equations over-predicted 

the release loads for failure location 1, in which pure shear fracture was assumed. No 

conclusions were made about why the design equations over-predicted lateral capacity for failure 

location 1. However, it should be noted that the design equations did not account for stress 

concentrators at square corners, or bending and buckling of the tabbed bracket’s head, both of 

which seemed to contribute to the failure of tabbed bracket Versions 6 and 8. 

It should be noted that the tabbed brackets that were tested and evaluated in previous 

rounds exhibited tab scraping against the inside of the flange when loaded vertically. However, 

all of the bolted tabbed brackets that were tested and evaluated in this round performed ideally 
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when pulled vertically. Thus, it was valid to compare the observed vertical release loads to the 

loads predicted by the design equations, as shown in Table 15. In general, the equations under-

predicted the vertical release loads but not by a consistent margin. 

Table 15. Expected vs. Observed Vertical Release Loads for Bolted Tabbed Brackets 

Tabbed 

Bracket 

Version 

Test 

No. 

HTTB- 

Vertical Release Load 

lb (kN) 

Expected Observed 

5 17 117 (0.52) 122 (0.54) 

18 117 (0.52) 148 (0.66) 

6 39 123 (0.55) 124 (0.55) 

7 35 264 (1.17) 464 (2.06) 

36 264 (1.17) 309 (1.37) 

8 19 235 (1.05) 239 (1.06) 

20 235 (1.05) 283 (1.26) 

10 37 235 (1.05) 419 (1.86) 

38 235 (1.05) 272 (1.21) 

*Blue highlighted cells show observed vertical release loads which were less than or deemed 

“close enough” to the 225-lb (1.00-kN) target 

 

Following the Round 3 testing on the bolted tabbed brackets, it was concluded that no 

more design modifications or testing was needed. A sufficient number of brackets provided the 

desired cable release behavior for cable-to-post attachment for the bottom three cables. Thus, the 

final step in the design process was to select cable-to-post attachment hardware for the lower 

three cables, which is described in Chapter 16. 
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16 CABLE-TO-POST ATTACHMENT CONCLUSIONS 

16.1 Summary of Design and Testing Efforts 

The original keyway bolts, as used in full-scale test nos. 4CMB-4, 4CMB-5, and 

4CMBLT-1, had lateral and vertical release loads of 8.00 kips (35.6 kN) and 1.18 kips (5.25 kN), 

respectively, according to results obtained during a prior dynamic component testing program 

[71]. 

As a result of the re-design and testing efforts discussed previously, much was learned 

and accomplished regarding the behavior of the cable-to-post attachments. For the continuation 

effort reported herein, a total of seventy dynamic component tests were performed on 

modified/extended keyway bolts as well as various types of tabbed brackets. These design 

prototypes, along with the corresponding lateral and vertical release loads, are summarized in 

Table 16. Two tests were performed on each concept and for each load orientation. Unless 

otherwise noted, the lateral and vertical release loads reported in Table 16 were the averages. In 

general, if the two tests did not provide similar results, the design was considered to be flawed 

where the behavior was deemed inconsistent. 
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Table 16. Summary of Design Concepts for Cable-to-Post Attachments 

Design Concept Material 

Average Cable Release 

Loads, kips (kN) 

Lateral Vertical 

Keyway Bolt in Original Dual-

Width Keyway 
ASTM A449 

8.00 

(35.6) 

1.18 

(5.25) 

Keyway Bolt in Small Oversized 

Keyway 
ASTM A449 

1
  1.14 

(5.07) 

0.48 

(2.1) 

Keyway Bolt in Small Oversized 

Keyway 
AISI C1018 

0.535 

(2.38) 

0.35 

(1.6) 

Keyway Bolt in Large Oversized 

Keyway 
ASTM A449 

1.03 

(4.58) 

0.45 

(2.0) 

Keyway Bolt in Large Oversized 

Keyway 
AISI C1018 

1.04 

(4.63) 

0.33 

(1.5) 

Modified Keyway Bolt in Large 

Oversized Keyway 
AISI C1018 

1
  0.80 

(3.6) 

1.44 

(6.41) 

Extended Keyway Bolt in 

Original Dual-Width Keyway 
AISI C1018 

2.64 

(11.7) 

0.41 

(1.8) 

Extended Keyway Bolt in 

Modified Dual-Width Keyway 
AISI C1018 

2
  6.47 

(28.8) 

0.49 

(2.2) 

Tabbed Bracket Version 1, 

Crimp-In-Place 

Hot-Rolled ASTM 

A1011 HSLA Grade 50 

5.93 

(26.4) 

2.84 

(12.6) 

Tabbed Bracket Version 2, 

Crimp-In-Place 

Hot-Rolled ASTM 

A1011 HSLA Grade 50 

6.56 

(29.2) 

1.32 

(5.87) 

Tabbed Bracket Version 3, 

Bolted 

Hot-Rolled ASTM 

A1011 HSLA Grade 50 

3
  5.18 

(23.0) 

0.78 

(3.47) 

Tabbed Bracket Version 4, 

Bolted 

Hot-Rolled ASTM 

A1011 HSLA Grade 50 

4.57 

(20.3) 

0.94 

(4.2) 

Tabbed Bracket Version 5, 

Bolted 

Hot-Rolled ASTM 

A1011 HSLA Grade 50 

3.02 

(13.4) 

0.14 

(0.62) 

Tabbed Bracket Version 6, 

Bolted 

Hot-Rolled ASTM 

A1011 HSLA Grade 50 

3.47 

(15.4) 

0.12 

(0.53) 

Tabbed Bracket Version 7, 

Bolted 

Hot-Rolled ASTM 

A1011 HSLA Grade 50 

4.46 

(19.8) 

0.39 

(1.7) 

Tabbed Bracket Version 8, 

Bolted 

Hot-Rolled ASTM 

A1011 HSLA Grade 50 

5.65 

(25.1) 

0.26 

(1.2) 

Tabbed Bracket Version 9, 

Bolted 

Hot-Rolled ASTM 

A1011 HSLA Grade 50 

0.60 

(2.7) 
Not Tested 

Tabbed Bracket Version 10, 

Bolted 

Hot-Rolled ASTM 

A1011 HSLA Grade 50 

6.10 

(27.1) 

0.35 

(1.6) 
1. Single value—lower reported 

2. The assumed lateral release load for bolt fracture through threads was reported 

3. 3 tests total, 2.38-kip (10.6-kN) value disregarded due to fabrication flaw 
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The first part of the re-design effort, as described in Chapters 5 through 9, was to modify 

the existing cable-to-post attachments at the lower three cable locations in order to reduce the 

vertical release load to approximately 225 lb (1.00 kN), while maintaining a lateral release load 

of approximately 6.00 kips (26.7 kN). Thus, AISI C1018 extended keyway bolts were designed 

and tested, which provided lateral and vertical release loads of 6.47 kips (28.8 kN) and 486 lb 

(2.16 kN), respectively. This result was a significant improvement over the ASTM A449 keyway 

bolts, which provided a vertical release load of 1.18 kips. However, it was believed that the 

vertical cable release load could be further reduced, while still maintaining a lateral cable release 

load close to 6.00 kips (26.7 kN). 

The second part of the re-design effort was to develop some completely new concepts. 

This effort resulted in several tabbed bracket designs, as described in Chapters 10 through 15. 

There were two main variations of the tabbed brackets—crimp-in-place and bolted which 

referenced the method of attachment to the post. The crimp-in-place variation was ultimately 

discarded in favor of the bolted variation. Subsequently, two rounds of design modifications and 

tests were used to evaluate the bolted tabbed brackets, which resulted in five different working 

versions. 

16.2 Selection of Cable-to-Post Attachment 

As noted above, the target lateral and vertical cable release loads were 6.00 kips (26.7 

kN) and 225 lb (1.00 kN), respectively. These goals guided the design process, although they 

were not treated like rigid criteria to be met. After design equations had been developed, 

evaluated, and revised, there remained some additional concern by project team members 

regarding the potential for unpredictable cable release behavior, especially in the vertical 

direction, when installed in actual cable barrier systems. For this reason, some of the bolted 
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tabbed brackets were deliberately designed with significantly lower vertical and lateral cable 

release loads. 

Bolted tabbed bracket Version 6 was deemed the best concept from those having lower 

target vertical and lateral cable release loads. Its lateral and vertical cable release loads were 3.47 

kips (15.4 kN) and 124 lb (552 N), respectively. A vertical cable release load lower than the 225-

lb (1.00-kN) target was considered to be beneficial. However, the trade-off was a lower lateral 

release load, which meant a reduced ability for the bracket to develop the full moment capacity 

of the post when loaded laterally. 

Bolted tabbed bracket Version 8 had lateral and vertical cable release loads of 5.65 kips 

(25.1 kN) and 261 lb (1.16 kN), respectively, which was very close to the initial targeted values. 

Bolted tabbed bracket Version 10 was very similar to Version 8 in performance and design. It 

had lateral and vertical cable release loads of 6.10 kips (27.1 kN) and 346 lb (1.54 kN), 

respectively. Both Versions 8 and 10 were caught in their respective keyways when pulled 

laterally and released through freely when pulled vertically, which was the desired behavior. 

Bolted tabbed bracket Version 8 is shown next to keyway Version 8 in Figure 358. 
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Bolted Tabbed Bracket Version 8   Keyway Version 8 

 

Figure 358. Bolted Tabbed Bracket Version 8 and Keyway Version 8 

Bolted tabbed bracket Version 10 is shown next to keyway Version 10 in Figure 359. 

                         
Tabbed Bracket Version 10     Keyway Version 10 

 

Figure 359. Bolted Tabbed Bracket Version 10 and Keyway Version 10 
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Either bolted tabbed bracket—Version 8 or 10—will fit into either keyway. The neck of 

bolted tabbed bracket Version 8 was longer than that of Version 10 by 1/8 in. (3.2 mm). The 

lower, narrow slot of keyway Version 8 was shallower than that of Version 10 by 1/16 in. (1.6 

mm). Since bolted tabbed bracket Version 8 caught in its own keyway when pulled laterally, it is 

almost certain that bolted tabbed bracket Version 10 would also catch in keyway Version 8 when 

pulled laterally. Furthermore, since bolted tabbed bracket Version 10 released freely through its 

own keyway when pulled vertically, it is almost certain that it would also release freely through 

keyway Version 8 when pulled vertically. In fact, keyway Version 8 is probably better suited for 

bolted tabbed bracket Version 10. The vertical release load of bolted tabbed bracket Version 10, 

when used with keyway Version 8, would probably range between 261 lb (1.16 kN) and 346 lb 

(1.54 kN)—the vertical release loads of the two bolted tabbed brackets when used in their own 

keyways. Likewise, the lateral release load of that combination would probably range between 

5.65 kips (25.1 kN) and 6.10 kips (27.1 kN)—the lateral release loads of the two bolted tabbed 

brackets when used in their own keyways. 

Finally, the selection of a preferred cable-to-post attachment was between bolted tabbed 

bracket Version 8 and bolted tabbed bracket Version 10. The shorter neck of tabbed bracket 

Version 10 was ultimately more desirable; since, there would be additional clearance away from 

the backside surface of the flange. Ultimately, bolted tabbed bracket Version 10, in combination 

with keyway Version 8, was selected for the new cable-to-post attachment for the bottom three 

cables of the high-tension, 4-cable median barrier. However, it should be noted that the AISI 

C1018 extended keyway bolt may also provide acceptable behavior when used in high-tension, 

cable barrier systems. 
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17 TOP CABLE-TO-POST ATTACHMENT DETAILS 

17.1 Introduction 

A cable median barrier must be able to capture passenger vehicles, regardless of where 

impact occurs within the system. In full-scale crash test no. 4CMB-5, the pickup truck (2270P 

vehicle) impacted the system just upstream from a post. As the post was struck and rotated 

backward, the top cable was pulled down and allowed the vehicle to override the barrier system. 

To prevent this behavior, it was believed that the top cable-to-post attachment would need to 

restrain the cable under static loading conditions but allow cable release almost immediately 

when a post was struck by a vehicle. 

Previously, the same cable-to-post attachment was used at all four cable locations. 

However, it was deemed necessary to utilize a weaker cable-to-post attachment for the top cable 

than used for the lower three cables. This concept was completely new and required a fresh start 

with new ideas. The new, top cable-to-post attachment would need to be relatively simple, easy 

to install, and have vertical and lateral cable release loads in the range of 100 to 200 lb (445 to 

890 N). The new hardware would also need to be corrosion resistant. To begin this effort, it was 

decided initially to investigate the availability and use of small diameter, galvanized carbon steel, 

brass, and stainless steel round rods. It was believed that design prototypes could be fabricated 

rather easily, and their vertical release loads could be tested statically using a tensile testing 

machine. During the investigation of black and galvanized carbon steel rod or wire, it was 

realized that local vendors were unable to provide information about the material properties (i.e., 

yield, ultimate tensile strength, and ductility). However, brass and stainless steel round rods were 

found to be readily available in the sizes needed and with the material properties provided. Thus, 

only brass and stainless steel materials were considered for the formed cable-to-post attachments 

using bent rods or wire, although galvanized carbon steel rods remain a possibility for the future, 
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as long as they have similar material properties to the brass rods that were ultimately selected. In 

addition, commercially-available, stainless steel cable ties were also explored. 

Several sizes of round rods or bars were acquired using brass and stainless steel materials 

with varying mechanical properties. The yield strength and tensile strength for each specimen 

(material and size) is summarized in Table 17. 

Table 17. Round Rod or Bar Material-Type, Size, and Strength 

Material 
Diameter, 

in. (mm) 

Yield Strength, 

ksi (MPa) 

Tensile Strength, 

ksi (MPa) 

C360 Brass 1/16 (1.6) 
Not Provided on 

Mill Certificate 
80 (552) 

C360 Brass 3/32 (2.4) 
Not Provided on 

Mill Certificate 
73 (503) 

C360 Brass 1/8 (3.2) 62 (427) 81 (558) 

C360 Brass 3/16 (4.8) 63 (434) 68 (469) 

C360 Brass 1/4 (6.4) 
Not Provided on 

Mill Certificate 

Not Provided on 

Mill Certificate 

T-303 Stainless Steel 3/32 (2.4) 77 (531) 105 (724) 

T-304 Stainless Steel 1/8 (3.2) 97 (669) 113 (779) 

T-304 Stainless Steel 3/16 (4.8) 98 (676) 115 (793) 

T-304 Stainless Steel 1/4 (6.4) 98 (676) 114 (786) 

 

17.1.1 Static Tensile Testing 

All of the prototype designs denoted in this chapter were later subjected to static tensile 

testing using the procedures and setup described in Chapter 18. The results from these static tests 

are presented and discussed in Chapter 19. 

Forty-five static tests were conducted on the various designs, as detailed in the 

subsections that follow. There were two rounds of tests. Round 1 included web-inserted curved 

rods, squeeze-in-place curved rods, and HellermannTyton stainless steel cable ties. Round 2 

included revised web-inserted curved rods and straight rods. A limited number of photographs of 
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the concepts are shown in this chapter. Detailed drawings were not made, but preliminary 

sketches were created and used for in-house fabrication, as depicted in Appendix D. 

17.2 Top Cable-to-Post Attachment Design Concepts 

17.2.1 Web-Inserted Curved Rods 

The first concept consisted of web-inserted curved rods that were to be placed over the 

cable. Their lower, bent ends were to be inserted through pre-drilled or punched holes placed in 

the web. Once inserted, both ends would be bent upward as much as possible, thus securing the 

curved rod into place. Five variations were fabricated and tested. These five variations included: 

C360 brass rods with diameters of 1/16 in. (1.8 mm), 3/32 in. (2.4 mm), and 1/8 in. (3.2 mm); a 

T-303 stainless steel rod with a diameter of 3/32 in. (2.4 mm); and a T-304 stainless steel rod 

with a diameter of 1/8 in. (3.2 mm). An example of one of these variations is shown in Figure 

360. 

  
  As fabricated     As installed 

 

Figure 360. Web-Inserted Curved Rod Example 

17.2.2 Revised Web-Inserted Curved Rods 

Revised web-inserted curved rods were tested in the second round of static tests. There 

were two variations of revised web-inserted curved rods, both using a diameter of 1/8 in. (3.2 
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mm). One variation was fabricated from C360 brass, while the other variation used T-304 

stainless steel. The revised prototypes were slightly different from the web-inserted curved rods 

utilized, as shown in Figure 361. 

     
   (a) Original              (b) Revised  

 

Figure 361. 1/8-in. (3.2-mm) Web-Inserted Curved Rod—(a) Original and (b) Revised 

It should be noted that the original 1/8-in. (3.2-mm) web-inserted curved rods. The 

revised prototypes were lengthened, which made them easier to install and bend upward. Easy 

installation usually results in improved field installation. 

17.2.3 Squeeze-In-Place Curved Rods 

Squeeze-in-place curved rods were to be placed over the cable. Their lower ends were to 

be inserted through pre-drilled or punched holes placed in the flanges. To install the squeeze-in-

place curved rods, the open end had to be squeezed together and properly positioned between the 

flanges with holes. Then, the open leg ends would be released and allowed to spring back into 
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the holes. Five different variations were fabricated and tested. These five variations included: 

C360 brass rods with diameters of 1/16 in. (1.8 mm), 3/32 in. (2.4 mm), and 1/8 in. (3.2 mm); a 

T-303 stainless steel rod with a diameter of 3/32 in.; and a T-304 stainless steel rod with a 

diameter of 1/8 in. (3.2 mm). An example of one of these variations is shown in Figure 362. The 

squeeze-in-place curved rods were relatively easy to install, even with a little practice. These 

prototypes could also be easily removed when squeezed together with almost no observable 

deformation. 

  
As fabricated     As installed 

 

Figure 362. Squeeze-In-Place Curved Rod Example 

17.2.4 HellermannTyton Stainless Steel Cable Ties 

HellermannTyton stainless steel cable ties were configured to be looped through holes in 

the flanges and tightened over the cable. The cable ties were fabricated from 304 stainless steel. 

Two variations were acquired for later testing. The first variation was rated for a tensile force of 

250 lb (1.11 kN). Its thickness and width were 0.012 in. (0.30 mm) and 0.31 in. (7.9 mm), 

respectively. The second variation was rated for a tensile force of 150 lb (667 N). Its thickness 

and width were 0.012 in. (0.30 mm) and 0.18 in. (4.6 mm), respectively. An example of one of 
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these variations is shown in Figure 363. These cable ties were installed by hand and had a self-

locking, ball bearing mechanism. Installation of the cable tie was relatively easy. 

  
As purchased      As installed 

 

Figure 363. HellermannTyton Stainless Steel Cable Tie Example 

17.2.5 Straight Rods 

For the final design concept, a straight rod with bent ends was positioned over a cable 

which was placed in the bottom of a v-notch in the web. The straight rod with bent ends was 

inserted through a hole and slot in the flanges. Six different variations were fabricated and tested. 

These variations included C360 brass and T-304 stainless steel rods with diameters of 1/8 in. (3.2 

mm), 3/16 in. (4.8 mm), and 1/4 in. (6.4 mm). An example of one of these variations is shown in 

Figure 364. For all of the concepts denoted in Chapter 17, the straight brass rods with bent ends 

were the easiest to install. 
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As fabricated     As Installed 

 

Figure 364. Straight Rod Example 
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18 TOP CABLE-TO-POST ATTACHMENT STATIC TEST CONDITIONS 

18.1 Purpose 

The vertical cable release behavior of several top cable-to-post attachment concepts was 

evaluated with static tensile tests before considering dynamic bogie testing. These tests were 

used as a first step in the evaluation process. Their main advantage was that many static tests 

could be performed in a short time period and at a relatively low cost as compared to bogie 

testing. It was useful to observe deformations to the top cable-to-post attachments and determine 

vertical cable release loads. Next, engineering judgment could be used to select a concept which 

might perform well in a bogie test and eventually in a full-scale crash testing program. 

18.2 Scope 

Once again, forty-five static tensile tests were performed on the various top cable-to-post 

attachment concepts. These tests utilized a test jig, fixed within a tensile testing machine, to 

anchor the top cable-to-post attachments. For a given test, the top cable-to-post attachments were 

loaded at a constant displacement rate until they failed. The loads and displacements were 

recorded for each test. 

18.3 Testing Facility 

Static testing was performed at the University of Nebraska-Lincoln’s Mechanical 

Engineering Materials Lab, located in the Walter Scott Engineering Center. 

18.4 Equipment and Instrumentation 

Several types of equipment and instrumentation were utilized for the static testing 

program, including an MTS 810 with a displacement transducer and a 20-kip (89-kN) load cell, a 

test jig, standard-speed digital video, and digital still cameras. 
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18.4.1 MTS 810 

The Material Testing System (MTS) 810 was used to test the top cable-to-post 

attachment concepts under static loads. A 20-kip (89-kN) load cell measured the force placed on 

each attachment, while displacement transducers measured the corresponding deflection. Most 

tests were performed on the prototype hardware using a displacement rate of 0.2 in./min (5 

mm/min). However, one concept used a displacement rate of 0.4 in./min (10 mm/min), while 

another used a displacement rate of 0.8 in./min (20 mm/min). 

18.4.2 Test Jig 

The test jig consisted of a top assembly and a bottom assembly. The bottom assembly 

was one piece, consisting of a section of S3x5.7 (S76x8.5) steel post, welded on the bottom to a 

½-in. (13-mm) thick steel plate. On the bottom of that steel plate, another ½-in. (13-mm) thick 

steel plate was welded perpendicular to it, which allowed the bottom clamp of the MTS 810 to 

secure it. 

The top assembly consisted of four pieces. The top-most piece consisted of a ½-in. (13-

mm) thick steel plate, which allowed the top clamp of the MTS 810 to secure it, and a ¾-in. (19-

mm) diameter steel bar was welded to its bottom. Two, identical, symmetric, ½-in. (13-mm) 

thick steel plates—one on each end—were hung from the steel bar of the top-most piece of the 

assembly. Each of these plates had two slots. The slots were used to hang the plates from the top-

most piece and to provide a place to set the bottom-most piece. The bottom-most piece was a ¾-

in. (19-mm) diameter steel bar, used to simulate the cable. A photograph of the test jig is shown 

in Figure 365. 
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Figure 365. Test Jig for Static Tests 

18.4.3 Digital Photography 

Digital photographs of the samples were taken before and after static testing. These were 

taken with a Nikon Coolpix 8800 digital camera. Video footage of the static tests was collected 

with a JVC digital video camera. 
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19 TOP CABLE-TO-POST ATTACHMENT STATIC TESTING RESULTS AND 

DISCUSSION 

 

19.1 Results 

Several top cable-to-post attachment concepts were fabricated, as described in detail in 

Chapter 17, for use in a static testing program. Forty-five static component tests were conducted. 

All of the tests were configured to pull vertically on the top cable-to-post attachments. The test 

results varied greatly, and there were some observed problems and/or errors. These problems 

were associated with operator error (not knowing how long the MTS machine would run until it 

timed out), or a lack of knowledge of the concept behavior behave when loaded (not knowing 

whether prototypes would release quickly or slowly, and how much deflection to expect). 

Despite these problems, much information was garnered. 

As previously noted, the top cable-to-post attachments should provide relatively low 

lateral and vertical cable release strengths, say between 100 and 200 lb (445 and 890 N), to 

accommodate static loading conditions resulting from horizontal and vertical road alignments. 

However, the cable must be able to immediately release when the impacted post rotates 

backward and downward. It was also believed the vertical release behavior under static loading 

conditions would be indicative of cable release under real-world dynamic loading conditions. As 

noted previously, simple CAD details of the concepts can be found in Appendix D. 

19.2 Web-Inserted Curved Rods 

Web-inserted curved rod concepts were tested in test nos. KR-1 through KR-10. The test 

matrix and results are summarized in Table 18. Before and after photographs for one of the tests, 

as shown in Figure 366, are provided for a web-inserted curved rod. 
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Table 18. Test Matrix and Results for Web-Inserted Curved Rods 

Test 

No. 
Material 

Diameter 

in. (mm) 

Rate 

in./min 

(mm/min) 

Peak Load 

lb (N) 
Notes 

KR-1 
C360 

Brass 
1/16 (1.6) 0.2 (5) 6 (27) Bent and fractured at hole 

KR-2 
C360 

Brass 
1/16 (1.6) 0.2 (5) 59 (262) Bent and fractured at hole 

KR-3 
C360 

Brass 
3/32 (2.4) 0.2 (5) 185 (823) Bent and fractured at hole 

KR-4 
C360 

Brass 
3/32 (2.4) 0.2 (5) 205 (910) Bent and fractured at hole 

KR-5 
C360 

Brass 
1/8 (3.2) 0.2 (5) 275 (1,223) Bent and fractured at hole 

KR-6 
C360 

Brass 
1/8 (3.2) 0.2 (5) 295 (1,314) Bent and fractured at hole 

KR-7 

T-303 

Stainless 

Steel 

3/32 (2.4) 0.2 (5) 113 (502.6) 
Bent and slipped out of 

holes 

KR-8 

T-303 

Stainless 

Steel 

3/32 (2.4) 0.2 (5) 138 (613) 
Bent and slipped out of 

holes 

KR-9 

T-304 

Stainless 

Steel 

1/8 (3.2) 0.2 (5) 331 (1,472) 
Bent and slipped out of 

holes 

KR-10 

T-304 

Stainless 

Steel 

1/8 (3.2) 0.2 (5) 362 (1,609) 
Bent and slipped out of 

holes 
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Before 

 

 
After 

Figure 366. Example of Web-Inserted Curved Rod Test 
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19.2.1 Test Nos. KR-1 and KR-2 (Web, 1/16-in. Brass) 

For test nos. KR-1 and KR-2, web-inserted curved rods, fabricated from 1/16-in. (1.6-

mm) diameter, C360 brass, were vertically loaded at a displacement rate of 0.2 in./min (5 

mm/min). In test no. KR-1, the rod fractured near one of the bolt holes, just as it was beginning 

to bend. The peak load for test no. KR-1 was 6 lb (27 N). In test no. KR-2, the rod began to bend 

and slip out of one of the holes before it finally fractured. The peak load for test no. KR-2 was 

59.0 lb (262 N). The force versus displacement curve for test nos. KR-1 and KR-2 is shown in 

Figure 367. Pre- and post-test photographs are shown in Figures 368 and 369. 

 
Figure 367. Force Versus Displacement, Test Nos. KR-1 and KR-2 
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Figure 368. Pre-Test and Post-Test Photographs, Test No. KR-1 

  
Figure 369. Pre-Test and Post-Test Photographs, Test No. KR-2 
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19.2.2 Test Nos. KR-3 and KR-4 (Web, 3/32-in. Brass) 

For test nos. KR-3 and KR-4, web-inserted curved rods, fabricated from 3/32-in. (2.4-

mm) diameter, C360 brass, were vertically loaded at a displacement rate of 0.2 in./min (5 

mm/min). In both tests, the rods began to bend and slip out of one of the holes before finally 

fracturing. The peak loads for test nos. KR-3 and KR-4 were 185 lb (823 N) and 205 lb (910 N), 

respectively. The force versus displacement curve for test nos. KR-3 and KR-4 is shown in 

Figure 370. Pre- and post-test photographs are shown in Figures 371 and 372. 

 
Figure 370. Force Versus Displacement, Test Nos. KR-3 and KR-4 
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Figure 371. Pre-Test and Post-Test Photographs, Test No. KR-3 

  
Figure 372. Pre-Test and Post-Test Photographs, Test No. KR-4 
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19.2.3 Test Nos. KR-5 and KR-6 (Web, 1/8-in. Brass) 

For test nos. KR-5 and KR-6, web-inserted curved rods, fabricated from 1/8-in. (3.2-mm) 

diameter, C360 brass, were vertically loaded at a displacement rate of 0.2 in./min (5 mm/min). In 

both tests, the rods began to bend and slip out of one of the holes before finally fracturing. The 

peak loads for test nos. KR-5 and KR-6 were 275 lb (1,223 N) and 295 lb (1,314 N), 

respectively. The force versus displacement curve for test nos. KR-5 and KR-6 is shown in 

Figure 373. Pre- and post-test photographs are shown in Figures 374 and 375. 

 
Figure 373. Force Versus Displacement, Test Nos. KR-5 and KR-6 
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Figure 374. Pre-Test and Post-Test Photographs, Test No. KR-5 

  
Figure 375. Pre-Test and Post-Test Photographs, Test No. KR-6 
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19.2.4 Test Nos. KR-7 and KR-8 (Web, 3/32-in. Stainless) 

For test nos. KR-7 and KR-8, web-inserted curved rods, fabricated from 3/32-in. (2.4-

mm) diameter, T-303 stainless steel, were vertically loaded at a displacement rate of 0.2 in./min 

(5 mm/min). In both tests, the rods began to bend, eventually slipping out of the holes. The peak 

loads for test nos. KR-7 and KR-8 were 113 lb (503 N) and 138 lb (613 N), respectively. The 

force versus displacement curve for test nos. KR-7 and KR-8 is shown in Figure 376. Pre- and 

post-test photographs are shown in Figures 377 and 378. 

 
Figure 376. Force Versus Displacement, Test Nos. KR-7 and KR-8 
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Figure 377. Pre-Test and Post-Test Photographs, Test No. KR-7 

  
Figure 378. Pre-Test and Post-Test Photographs, Test No. KR-8 
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19.2.5 Test Nos. KR-9 and KR-10 (Web, 1/8-in. Stainless) 

For test nos. KR-9 and KR-10, web-inserted curved rods, fabricated from 1/8-in. (3.2-

mm) diameter, T-304 stainless steel, were vertically loaded at a displacement rate of 0.2 in./min 

(5 mm/min). In both tests, the rods began to bend, eventually slipping out of the holes. The peak 

loads for test nos. KR-9 and KR-10 were 331 lb (1,472 N) and 362 lb (1,609 N), respectively. 

The force versus displacement curve for test nos. KR-9 and KR-10 is shown in Figure 379. Pre- 

and post-test photographs are shown in Figures 380 and 381. 

 
Figure 379. Force Versus Displacement, Test Nos. KR-9 and KR-10 
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Figure 380. Pre-Test and Post-Test Photographs, Test No. KR-9 

  
Figure 381. Pre-Test and Post-Test Photographs, Test No. KR-10 
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19.3 Squeeze-In-Place Curved Rods 

Squeeze-in-place curved rod concepts were tested in test nos. KR-11 through KR-20. The 

test matrix and results are summarized in Table 19. Before and after photographs for one of the 

tests, as shown in Figure 382, are provided for a squeeze-in-place curved rod. 

Table 19. Test Matrix and Results for Squeeze-In-Place Curved Rods 

Test 

No. 
Material 

Diameter 

in. (mm) 

Rate 

in./min 

(mm/min) 

Peak Load 

lb (N) 
Notes 

KR-11 
C360 

Brass 
1/16 (1.6) 0.2 (5) 8 (36) 

Bent and slipped out of 

holes 

KR-12 
C360 

Brass 
1/16 (1.6) 0.2 (5) 11 (49) 

Bent and slipped out of 

holes 

KR-13 
C360 

Brass 
3/32 (2.4) 0.2 (5) 31 (137) 

Bent and slipped out of 

holes 

KR-14 
C360 

Brass 
3/32 (2.4) 0.2 (5) 37 (163) 

Bent and slipped out of 

holes 

KR-15 
C360 

Brass 
1/8 (3.2) 0.2 (5) 58 (258) 

Bent and slipped out of 

holes 

KR-16 
C360 

Brass 
1/8 (3.2) 0.2 (5) 62 (277) 

Bent and slipped out of 

holes 

KR-17 

T-303 

Stainless 

Steel 

3/32 (2.4) 0.2 (5) 41 (183) 
Bent and slipped out of 

holes 

KR-18 

T-303 

Stainless 

Steel 

3/32 (2.4) 0.2 (5) 42 (185) 
Bent and slipped out of 

holes 

KR-19 

T-304 

Stainless 

Steel 

1/8 (3.2) 0.2 (5) 76 (336) 
Bent and slipped out of 

holes 

KR-20 

T-304 

Stainless 

Steel 

1/8 (3.2) 0.2 (5) 71 (315) 
Bent and slipped out of 

holes 
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Before 

 

 
After 

Figure 382. Example of Squeeze-In-Place Curved Rod Test 
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19.3.1 Test Nos. KR-11 and KR-12 (Squeeze, 1/16-in. Brass) 

For test nos. KR-11 and KR-12, squeeze-in-place curved rods, fabricated from 1/16-in. 

(1.6-mm) diameter, C360 brass, were vertically loaded at a displacement rate of 0.2 in./min (5 

mm/min). In both tests, as the rods were pulled upward, their ends slipped out of the holes in the 

flanges. The peak loads for test nos. KR-11 and KR-12 were 8 lb (36 N) and 11 lb (49 N), 

respectively. The force versus displacement curve for test nos. KR-11 and KR-12 is shown in 

Figure 383. Pre-test photographs are shown in Figures 384 and 385. There was no noticeable 

plastic deformation of the squeeze-in-place curved rods between the beginning and end states. 

 
Figure 383. Force Versus Displacement, Test Nos. KR-11 and KR-12 
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Figure 384. Pre-Test Photograph, Test No. KR-11 

 
Figure 385. Pre-Test Photograph, Test No. KR-12 
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19.3.2 Test Nos. KR-13 and KR-14 (Squeeze, 3/32-in. Brass) 

For test nos. KR-13 and KR-14, squeeze-in-place curved rods, fabricated from 3/32-in. 

(2.4-mm) diameter, C360 brass, were vertically loaded at a displacement rate of 0.2 in./min (5 

mm/min). In both tests, as the rods were pulled upward, their ends slipped out of the holes in the 

flanges. The peak loads for test nos. KR-13 and KR-14 were 31 lb (137 N) and 37 lb (163 N), 

respectively. The force versus displacement curve for test nos. KR-13 and KR-14 is shown in 

Figure 386. Pre-test photographs are shown in Figures 387 and 388. There was no noticeable 

plastic deformation of the squeeze-in-place curved rods between the beginning and end states. 

 
Figure 386. Force Versus Displacement, Test Nos. KR-13 and KR-14 
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Figure 387. Pre-Test Photograph, Test No. KR-13 

 
Figure 388. Pre-Test Photograph, Test No. KR-14 
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19.3.3 Test Nos. KR-15 and KR-16 (Squeeze, 1/8-in. Brass) 

For test nos. KR-15 and KR-16, squeeze-in-place curved rods, fabricated from 1/8-in. 

(3.2-mm) diameter, C360 brass, were vertically loaded at a displacement rate of 0.2 in./min (5 

mm/min). In both tests, as the rods were pulled upward, their ends slipped out of the holes in the 

flanges. The peak loads for test nos. KR-15 and KR-16 were 58 lb (258 N) and 62 lb (277 N), 

respectively. The force versus displacement curve for test nos. KR-15 and KR-16 is shown in 

Figure 389. Pre-test photographs are shown in Figures 390 and 391. There was no noticeable 

plastic deformation of the squeeze-in-place curved rods between the beginning and end states. 

 
Figure 389. Force Versus Displacement, Test Nos. KR-15 and KR-16 
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Figure 390. Pre-Test Photograph, Test No. KR-15 

 
Figure 391. Pre-Test Photograph, Test No. KR-16 
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19.3.4 Test Nos. KR-17 and KR-18 (Squeeze, 3/32-in. Stainless) 

For test nos. KR-17 and KR-18, squeeze-in-place curved rods, fabricated from 3/32-in. 

(2.4-mm) diameter, T-303 stainless steel, were vertically loaded at a displacement rate of 0.2 

in./min (5 mm/min). In both tests, as the rods were pulled upward, their ends slipped out of the 

holes in the flanges. The peak loads for test nos. KR-17 and KR-18 were 41 lb (183 N) and 42 lb 

(185 N), respectively. The force versus displacement curve for test nos. KR-17 and KR-18 is 

shown in Figure 392. Pre-test photographs are shown in Figures 393 and 394. There was no 

noticeable plastic deformation of the squeeze-in-place curved rods between the beginning and 

end states. 

 
Figure 392. Force Versus Displacement, Test Nos. KR-17 and KR-18 
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Figure 393. Pre-Test Photograph, Test No. KR-17 

 
Figure 394. Pre-Test Photograph, Test No. KR-18 
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19.3.5 Test Nos. KR-19 and KR-20 (Squeeze, 1/8-in. Stainless) 

For test nos. KR-19 and KR-20, squeeze-in-place curved rods, fabricated from 1/8-in. 

(3.2-mm) diameter, T-304 stainless steel, were vertically loaded at a displacement rate of 0.2 

in./min (5 mm/min). In both tests, as the rods were pulled upward, their ends slipped out of the 

holes in the flanges. The peak loads for test nos. KR-19 and KR-20 were 76 lb (336 N) and 71 lb 

(315 N), respectively. The force versus displacement curve for test nos. KR-19 and KR-20 is 

shown in Figure 395. Pre-test photographs are shown in Figures 396 and 397. There was no 

noticeable plastic deformation of the squeeze-in-place curved rods between the beginning and 

end states. 

 
Figure 395. Force Versus Displacement, Test Nos. KR-19 and KR-20 
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Figure 396. Pre-Test Photograph, Test No. KR-19 

 
Figure 397. Pre-Test Photograph, Test No. KR-20 
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19.4 HellermannTyton Stainless Steel Cable Ties 

HellermannTyton stainless steel cable ties were tested in test nos. TCT-1 through TCT-9. 

The test matrix and results are summarized in Table 20. Before and after photographs for one of 

the tests, as shown in Figure 398, are provided for a HellermannTyton stainless steel cable tie. 

Table 20. Test Matrix and Results for HellermannTyton Stainless Steel Cable Ties 

Test 

No. 
Material 

Cross-Section        

in. (mm) 
Rate 

in./min 

(mm/min) 

Peak 

Load 

lb (N) 

Notes 

Width Thickness 

TCT-4 
Stainless 

Steel 304 

0.31 

(7.9) 

0.012 

(0.30) 
0.4 (10) 

353 

(1,572) 

Locking 

mechanism 

failure 

TCT-6 
Stainless 

Steel 304 

0.31 

(7.9) 

0.012 

(0.30) 
0.4 (10) 

349 

(1,554) 

Locking 

mechanism 

failure 

TCT-7 
Stainless 

Steel 304 

0.31 

(7.9) 

0.012 

(0.30) 
0.4 (10) 

274 

(1,217) 

Locking 

mechanism 

failure 

TCT-8 
Stainless 

Steel 304 

0.18 

(4.6) 

0.012 

(0.30) 
0.4 (10) 

133 

(593) 

Locking 

mechanism 

failure 

TCT-9 
Stainless 

Steel 304 

0.18 

(4.6) 

0.012 

(0.30) 
0.4 (10) 

182 

(809) 

Locking 

mechanism 

failure 
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Figure 398. Example of HellermannTyton Stainless Steel Cable Tie Test 
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19.4.1 Tests that timed out 

Test nos. TCT-1 through TCT-3 and TCT-5 all timed out before failure. This result 

occurred due in part to operator error. For some reason, the MTS did not run longer than 100 sec. 

Fortunately, several extra cable ties were available for use. Test nos. TCT-4, TCT-6, and TCT-7 

used the same cable ties to successfully demonstrate component behavior. 

19.4.2 Test Nos. TCT-4, TCT-6 and TCT-7 (Ties, 0.31-in.) 

For test nos. TCT-4, TCT-6, and TCT-7, HellermannTyton cable ties, type MBT14HS, 

fabricated from 0.31-in. (7.9-mm) wide by 0.012-in. (0.30-mm) thick, stainless steel 304, were 

vertically loaded at a displacement rate of 0.4 in./min (10 mm/min). The locking mechanisms 

failed in all three tests. The peak loads for test nos. TCT-4, TCT-6, and TCT-7 were 353 lb 

(1,572 N), 349 lb (1,554 N), and 274 lb (1,217 N), respectively. The force versus displacement 

curve for test nos. TCT-4, TCT-6 and TCT-7 is shown in Figure 399. Pre- and post-test 

photographs are shown in Figures 400 through 402. 
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Figure 399. Force Versus Displacement, Test Nos. TCT-4, TCT-6 and TCT-7 

  
Figure 400. Pre-Test and Post-Test Photographs, Test No. TCT-4 
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Figure 401. Pre-Test and Post-Test Photographs, Test No. TCT-6 

  
Figure 402. Pre-Test and Post-Test Photographs, Test No. TCT-7 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

453 

19.4.3 Test Nos. TCT-8 and TCT-9 (Ties, 0.18-in.) 

For test nos. TCT-8 and TCT-9, HellermannTyton cable ties, type MBT14SS, fabricated 

from 0.18-in. (4.6-mm) wide by 0.012-in. (0.30-mm) thick, stainless steel 304, were vertically 

loaded at a displacement rate of 0.4 in./min (10 mm/min). The locking mechanisms failed in both 

tests. The peak loads for test nos. TCT-8 and TCT-9 were 133 lb (593 N) and 182 lb (809 N), 

respectively. The force versus displacement curve for test nos. TCT-8 and TCT-9 is shown in 

Figure 403. Pre- and post-test photographs are shown in Figures 404 and 405. 

 
Figure 403. Force Versus Displacement, Test Nos. TCT-8 and TCT-9 
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Figure 404. Pre-Test and Post-Test Photographs, Test No. TCT-8 

  
Figure 405. Pre-Test and Post-Test Photographs, Test No. TCT-9 
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19.5 Revised Web-Inserted Curved Rods 

Revised web-inserted curved rod concepts were tested in test nos. KR-21 through KR-24. 

The test matrix and results are summarized in Table 21. Before and after photographs for one for 

the tests, as shown in Figure 406, are provided for a revised web-inserted curved rod. 

Table 21. Test Matrix and Results for Revised Web-Inserted Curved Rods 

Test 

No. 
Material 

Diameter 

in. (mm) 

Rate 

in./min 

(mm/min) 

Peak 

Load   

lb (N) 

Notes 

KR-21 
C360 

Brass 
1/8 (3.2) 0.2 (5) 

567 

(2,520) 
Bent and fractured at hole 

KR-22 
C360 

Brass 
1/8 (3.2) 0.2 (5) 

545 

(2,426) 
Bent and fractured at hole 

KR-23 

T-304 

Stainless 

Steel 

1/8 (3.2) 0.2 (5) 
799 

(3,554) 
Bent and slipped out of hole 

KR-24 

T-304 

Stainless 

Steel 

1/8 (3.2) 0.2 (5) 
884 

(3,930) 
Bent and slipped out of hole 
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Figure 406. Example Revised Web-Inserted Curved Rod Test 
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19.5.1 Test Nos. KR-21 and KR-22 (Rev. Web, 1/8-in. Brass) 

For test nos. KR-21 and KR-22, revised web-inserted curved rods, fabricated from 1/8-in. 

(3.2-mm) diameter, C360 brass, were vertically loaded at a displacement rate of 0.2 in./min (5 

mm/min). In both tests, the rods began to bend, before finally fracturing at the location of one of 

the holes. The peak loads for test nos. KR-21 and KR-22 were 567 lb (2,520 N) and 545 lb 

(2,462 N), respectively. The force versus displacement curve for test nos. KR-21 and KR-22 is 

shown in Figure 407. Pre- and post-test photographs are shown in Figures 408 and 409. 

 
Figure 407. Force Versus Displacement, Test Nos. KR-21 and KR-22 
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Figure 408. Pre-Test and Post-Test Photographs, Test No. KR-21 

  
Figure 409. Pre-Test and Post-Test Photographs, Test No. KR-22 
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19.5.2 Test Nos. KR-23 and KR-24 (Rev. Web, 1/8-in. Stainless) 

For test nos. KR-23 and KR-24, revised web-inserted curved rods, fabricated from 1/8-in. 

(3.2-mm) diameter, T-304 stainless steel, were vertically loaded at a displacement rate of 0.2 

in./min (5 mm/min). In both tests, the rods bent and eventually slipped out of the holes. The peak 

loads for test nos. KR-23 and KR-24 were 799 lb (3,554 N) and 884 lb (3,930 N), respectively. 

The force versus displacement curve for test nos. KR-23 and KR-24 is shown in Figure 410. Pre- 

and post-test photographs are shown in Figures 411 and 412. 

 
Figure 410. Force Versus Displacement, Test Nos. KR-23 and KR-24 
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Figure 411. Pre-Test and Post-Test Photographs, Test No. KR-23 

  
Figure 412. Pre-Test and Post-Test Photographs, Test No. KR-24 
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19.6 Straight Rods 

Straight rod concepts were tested in test nos. KR-25 through KR-36. The test matrix and 

results are summarized in Table 22. Before and after photographs for one of the tests, as shown 

in Figure 413, are provided for a straight rod. 

Table 22. Test Matrix and Results for Straight Rods 

Test 

No. 
Material 

Diameter, 

in. (mm) 

Rate, 

in./min 

(mm/min) 

Peak 

Load, 

lb (N) 

Notes 

KR-25 
C360 

Brass 
1/8 (3.2) 0.2 (5) 

169 

(753) 

Timed out twice, slipped out 

on 3rd run 

KR-26 
C360 

Brass 
1/8 (3.2) 0.8 (20) 

181 

(806) 

Bent and fractured at 

location of hole 

KR-27 
T-304 

Stainless 
1/8 (3.2) 0.8 (20) 

360 

(1,603) 
Bent and slipped out of hole 

KR-28 
T-304 

Stainless 
1/8 (3.2) 0.8 (20) 

412 

(1,833) 
Bent and slipped out of hole 

KR-29 
C360 

Brass 
3/16 (4.8) 0.8 (20) 

732 

(3,254) 

Bent and fractured at 

location of hole 

KR-30 
C360 

Brass 
3/16 (4.8) 0.8 (20) 

681 

(3,030) 
Bent and slipped out of hole 

KR-31 
T-304 

Stainless 
3/16 (4.8) 0.8 (20) 

1,465 

(6,517) 

Bent and slipped out of hole, 

local yielding caused hole to 

warp 

KR-32 
T-304 

Stainless 
3/16 (4.8) 0.8 (20) 

1,234 

(5,489) 

Bent and slipped out of hole, 

local yielding caused hole to 

warp 

KR-33 
C360 

Brass 
1/4 (6.4) 0.8 (20) 

1,301 

(5,787) 

Bent and fractured at 

location of hole 

KR-34 
C360 

Brass 
1/4 (6.4) 0.8 (20) 

1,313 

(5,840) 

Bent and fractured at 

location of hole 

KR-35 
T-304 

Stainless 
1/4 (6.4) 0.8 (20) 

2,858 

(12,710) 

Bent and slipped out of hole, 

local yielding caused hole to 

warp 

KR-36 
T-304 

Stainless 
1/4 (6.4) 0.8 (20) 

2,503 

(11,130) 

Bent and slipped out of hole, 

local yielding caused hole to 

warp 
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Before 

 

 
After 

Figure 413. Example of Straight Rod Test 
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19.6.1 Test No. KR-25 (Straight, 1/8-in. Brass) 

For test no. KR-25, a straight rod, fabricated from 1/8-in. (3.2-mm) diameter, C360 brass, 

was vertically loaded at a displacement rate of 0.2 in./min (5 mm/min). The MTS timed out 

twice. On the third run, one end of the straight rod finally slipped out of the hole. The peak load 

for test no. KR-25 occurred in the second run and was 169 lb (753 N). The force versus 

displacement curve for test no. KR-25 is shown in Figure 414. Pre- and post-test photographs are 

shown in Figure 415. 

 
Figure 414. Force Versus Displacement, Test No. KR-25 
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Figure 415. Pre-Test and Post-Test Photographs, Test No. KR-25 
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19.6.2 Test No. KR-26 (Straight, 1/8-in. Brass) 

For test no. KR-26, a straight rod, fabricated from 1/8-in. (3.2-mm) diameter, C360 brass, 

was vertically loaded at a displacement rate of 0.8 in./min (20 mm/min). The rod bent 

significantly before finally fracturing at a hole location. The peak load for test no. KR-26 was 

181 lb (806 N). The force versus displacement curve for test no. KR-26 is shown in Figure 416. 

Pre- and post-test photographs are shown in Figure 417. 

 
Figure 416. Force Versus Displacement, Test No. KR-26 
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Figure 417. Pre-Test and Post-Test Photographs, Test No. KR-26 
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19.6.3 Test Nos. KR-27 and KR-28 (Straight, 1/8-in. Stainless) 

For test nos. KR-27 and KR-28, straight rods, fabricated from 1/8-in. (3.2-mm) diameter, 

T-304 stainless steel, were vertically loaded at a displacement rate of 0.8 in./min (20 mm/min). 

In both tests, the rods bent significantly before one end finally slipped out of its hole. The peak 

loads for test nos. KR-27 and KR-28 were 360 lb (1,603 N) and 412 lb (1,833 N), respectively. 

The force versus displacement curve for test nos. KR-27 and KR-28 is shown in Figure 418. Pre- 

and post-test photographs are shown in Figures 419 and 420. 

 
Figure 418. Force Versus Displacement, Test Nos. KR-27 and KR-28 
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Figure 419. Pre-Test and Post-Test Photographs, Test No. KR-27 

  
Figure 420. Pre-Test and Post-Test Photographs, Test No. KR-28 
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19.6.4 Test Nos. KR-29 and KR-30 (Straight, 3/16-in. Brass) 

For test nos. KR-29 and KR-30, straight rods, fabricated from 3/16-in. (4.8-mm) 

diameter, C360 brass, were vertically loaded at a displacement rate of 0.8 in./min (20 mm/min). 

In test no. KR-29, the rod bent significantly before one end fractured at the location of its hole. 

In test no. KR-30, the rod bent significantly before one end finally slipped out of its hole. The 

peak loads for test nos. KR-29 and KR-30 were 732 lb (3,254 N) and 681 lb (3,030 N), 

respectively. The force versus displacement curve for test nos. KR-29 and KR-30 is shown in 

Figure 421. Pre- and post-test photographs are shown in Figures 422 and 423. 

 
Figure 421. Force Versus Displacement, Test Nos. KR-29 and KR-30 
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Figure 422. Pre-Test and Post-Test Photographs, Test No. KR-29 

  
Figure 423. Pre-Test and Post-Test Photographs, Test No. KR-30 
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19.6.5 Test Nos. KR-31 and KR-32 (Straight, 3/16-in. Stainless) 

For test nos. KR-31 and KR-32, straight rods, fabricated from 3/16-in. (4.8-mm) 

diameter, T-304 stainless steel, were vertically loaded at a displacement rate of 0.8 in./min (20 

mm/min). In both tests, the rods bent significantly before one end finally slipped out of its hole. 

There was also some local yielding of the flange around the holes. The peak loads for test nos. 

KR-31 and KR-32 were 1,465 lb (6,517 N) and 1,234 lb (5,489 N), respectively. The force 

versus displacement curve for test nos. KR-31 and KR-32 is shown in Figure 424. Pre- and post-

test photographs are shown in Figures 425 and 426. 

 
Figure 424. Force Versus Displacement, Test No. KR-31 and KR-32 
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Figure 425. Pre-Test and Post-Test Photographs, Test No. KR-31 

  
Figure 426. Pre-Test and Post-Test Photographs, Test No. KR-32 
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19.6.6 Test Nos. KR-33 and KR-34 (Straight, 1/4-in. Brass) 

For test nos. KR-33 and KR-34, straight rods, fabricated from 1/4-in. (6.4-mm) diameter, 

C360 brass, were vertically loaded at a displacement rate of 0.8 in./min (20 mm/min). In both 

tests, the rods bent significantly before one end fractured at the location of its hole. There was 

also some local yielding of the flange around the holes. The peak loads for test nos. KR-33 and 

KR-34 were 1,301 lb (5,787 N) and 1,313 lb (5,840 N), respectively. The force versus 

displacement curve for test nos. KR-33 and KR-34 is shown in Figure 427. Pre- and post-test 

photographs are shown in Figures 428 and 429. 

 
Figure 427. Force Versus Displacement, Test Nos. KR-33 and KR-34 
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Figure 428. Pre-Test and Post-Test Photographs, Test No. KR-33 

  
Figure 429. Pre-Test and Post-Test Photographs, Test No. KR-34 
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19.6.7 Test Nos. KR-35 and KR-36 (Straight, 1/4-in. Stainless) 

For test nos. KR-35 and KR-36, straight rods, fabricated from 1/4-in. (6.4-mm) diameter, 

T-304 stainless steel, were vertically loaded at a displacement rate of 0.8 in./min (20 mm/min). 

In both tests, the rods bent significantly before one end finally slipped out of its hole. There was 

also significant local yielding of the flange around the holes. The peak loads for test nos. KR-35 

and KR-36 were 2,858 lb (12,710 N) and 2,503 lb (11,130 N), respectively. The force versus 

displacement curve for test nos. KR-35 and KR-36 is shown in Figure 430. Pre- and post-test 

photographs are shown in Figures 431 and 432. 

 
Figure 430. Force Versus Displacement, Test Nos. KR-35 and KR-36 
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Figure 431. Pre-Test and Post-Test Photographs, Test No. KR-35 

  
Figure 432. Pre-Test and Post-Test Photographs, Test No. KR-36 
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19.7 Discussion 

Forty-five static tensile tests were performed on twenty different prototype concepts for 

the top cable-to-post attachment. The average vertical release loads for each of the twenty 

concepts are summarized in Table 23. 

Table 23. Average Vertical Release Loads for Top Cable-to-Post Attachments 

Rod Concepts 

Concept 
Diameter 

in. (mm) 
Material 

Average 

Vertical 

Release Load 

lb (N) 

Web-Inserted Curved Rod 1/16 (1.6) C360 Brass 32 (144) 

Web-Inserted Curved Rod 3/32 (2.4) C360 Brass 195 (866) 

Web-Inserted Curved Rod 1/8 (3.2) C360 Brass 285 (1,269) 

Web-Inserted Curved Rod 3/32 (2.4) T-303 Stainless Steel 126 (558) 

Web-Inserted Curved Rod 1/8 (3.2) T-304 Stainless Steel 346 (1,541) 

Squeeze-In-Place Curved Rod 1/16 (1.6) C360 Brass 10 (44) 

Squeeze-In-Place Curved Rod 3/32 (2.4) C360 Brass 34 (151) 

Squeeze-In-Place Curved Rod 1/8 (3.2) C360 Brass 60 (268) 

Squeeze-In-Place Curved Rod 3/32 (2.4) T-303 Stainless Steel 42 (184) 

Squeeze-In-Place Curved Rod 1/8 (3.2) T-304 Stainless Steel 73 (325) 

Revised Web-Inserted Curved Rod 1/8 (3.2) C360 Brass 556 (2,473) 

Revised Web-Inserted Curved Rod 1/8 (3.2) T-304 Stainless Steel 841 (3,742) 

Straight Rod 1/8 (3.2) C360 Brass 175 (779) 

Straight Rod 1/8 (3.2) T-304 Stainless Steel 386 (1,718) 

Straight Rod 3/16 (4.8) C360 Brass 706 (3,142) 

Straight Rod 3/16 (4.8) T-304 Stainless Steel 1,350 (6,003) 

Straight Rod 1/4 (6.4) C360 Brass 1,307 (5,814) 

Straight Rod 1/4 (6.4) T-304 Stainless Steel 
2,681 

(11,920) 

HellermannTyton Cable Ties 

Type 

Cross-Section 

in. (mm) 
Material 

Average 

Vertical 

Release Load 

lb (N) 
Width Thickness 

MBT14HS 0.31 (7.9) 0.012 (0.30) Stainless Steel 304 325 (1,447) 

MBT14SS 0.18 (4.6) 0.012 (0.30) Stainless Steel 304 157 (700.8) 

*Blue highlighted cells show average vertical release loads in the target range 
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The static tests were used to determine which concepts were simple, easy to install, and 

which provided a vertical cable release load in the range of 100 to 200 lb (445 to 890 N). From 

the twenty different top cable-to-post attachment prototypes, four provided vertical cable release 

loads within the target range. These concepts included: the 3/32-in. (2.4-mm) diameter, C360 

brass, web-inserted curved rod; the 3/32-in. (2.4-mm) diameter, T-303 stainless steel, web-

inserted curved rod; the HellermannTyton stainless steel cable tie, type MBT14SS; and the 1/8-

in. (3.2-mm) diameter, C360 brass, straight rod. Since the 1/8-in. (3.2-mm) diameter, C360 brass, 

straight rod was the simplest and easiest to install, it was chosen for additional dynamic testing 

and evaluation. 

While the lateral release load was never actually measured for the straight rods, it was 

reasoned that the lateral cable release loads would be similar to the vertical release loads. This 

assumption was based on the fact that the cable would be placed in a 1V:1H sloped, web v-notch 

with the straight rod positioned over it. Therefore, if a purely lateral force were applied to the top 

cable, the reaction of the straight rod would be purely vertical, and the reaction of the sloped 

surface of the v-notch would be at a 45-degree angle, as shown in Figure 433. 

 
Figure 433. Lateral Resistance of the Straight Rod and V-Notch 

For static equilibrium, the vertical reaction of the straight rod, RRod, must be equal in magnitude 

to the vertical component of the post reaction, (RPost)V. Likewise, the applied horizontal force, 
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PH, must be equal in magnitude to the horizontal component of the post reaction, (RPost)V. Since 

the v-notch where the cable sits has 1V:1H slopes (i.e., makes a 45-degree angle), the vertical 

and horizontal components of the post reaction are equal in magnitude. Therefore, the vertical 

reaction of the straight rod is equal in magnitude to the applied lateral force. 

Thus, the 1/8-in. (3.2-mm) diameter, C360 brass, straight rod with bent ends was to be 

subjected to dynamic bogie testing and evaluated to ensure that the cable would release when a 

post was struck by a surrogate vehicle. The bogie test setup and procedures are described in 

Chapter 20, and the test results are discussed in Chapter 21. 
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20 TOP CABLE-TO-POST ATTACHMENT—BOGIE IMPACT TEST CONDITIONS 

20.1 Purpose 

A bogie impact test on a scaled-down cable barrier system was deemed an excellent way 

to investigate and verify individual component behavior without the high costs associated with 

conducting a full-scale crash test. Thus, one such bogie impact test was performed to evaluate 

the prototype concept of a 1/8-in. (3.2-mm) diameter, C360 brass, straight rod with bent ends. 

The straight rods were installed as the top cable-to-post attachment for a series of S3x5.7 

(S76x8.5) steel posts with an upper high-tension cable. 

When the cable barrier system is impacted by a vehicle at a post, the top cable-to-post 

attachment must adequately and quickly release the cable, thus preventing that top cable from 

being pulled down with the rotating post. If the top cable is pulled down with the rotating post, it 

may not capture the vehicle, thus resulting in barrier override. Test no. HTTC-1 was performed 

to verify whether the 1/8-in. (3.2-mm) diameter, C360 brass, straight rods with bent ends would 

release the top cable immediately after the critical post was struck. 

20.2 Test Setup and Details 

The basic test setup consisted of five S3x5.7 (S76x8.5) steel posts, spaced at 16 ft (1.9 m) 

centers, with a tensioned cable mounted on top of all five posts. The cable, tensioned to 4,300 lb 

(19.1 kN), was placed in pre-cut v-notches on top of the line posts, and was anchored to cable 

terminals at both ends. Straight rods with bent ends, fabricated from 1/8-in. (3.2-mm) diameter, 

C360 brass were installed as top cable-to-post attachments at each post. The cable terminals were 

spaced 6 ft-10-5/8 in. (2.10 m) away from the line posts on both ends. The cable height was 40 

in. (1016 mm) above the ground. For line post installation, an 8-in. (200-mm) diameter hole was 

cored into the concrete deck to a depth of 18 in. (457 mm). The post was installed in the hole, 

and the hole was filled with soil and compacted. 
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A 1,877-lb (851-kg) bogie vehicle impacted the barrier system at the center post at a 

speed of 49.4 mph (79.5 km/h) and at a 25-degree angle. The post was impacted at a height of 

26-3/4 in. (673 mm) above the ground. The centerline of the bogie was aligned with the center of 

the post. The test would be considered a success if the cable quickly released away from the 

impacted post and the bogie went under it. The test would be considered a failure if it resulted in 

the cable itself being over-run by the bogie as a result of a failure to release away from the 

impacted post as it rotated backward and downward. Further, it would be undesirable for the 

cable to be pulled downward more than 2 in. (51 mm) before being released out of the notch. The 

drawing set for test no. HTTC-1 is shown in Figures 434 through 446. 
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Figure 434. Bogie Test Setup, Test No. HTTC-1 
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Figure 435. Cable Anchor Details, Test No. HTTC-1 
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Figure 436. Post with Straight Rod Details, Test No. HTTC-1 
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Figure 437. Post Details, Test No. HTTC-1 



 

 

4
8
6
 

A
u

g
u

st 2
9

, 2
0
1

3
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
5
-1

3
 

 
Figure 438. Straight Rod Details, Test No. HTTC-1 
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Figure 439. Anchorage Details, Test No. HTCC-1 
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Figure 440. Cable Anchor Bracket Details, Test No. HTTC-1 
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Figure 441. Cable Release Lever Assembly Details, Test No. HTTC-1 
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Figure 442. Cable Anchor Bracket Component Details, Test No. HTTC-1 
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Figure 443. Cable Anchor Bracket Component Details, Test No. HTTC-1 
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Figure 444. Cable Release Lever Component Details, Test No. HTTC-1 
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Figure 445. Cable End Assembly and Cable Spice Assembly Details, Test No. HTTC-1 
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Figure 446. Bill of Materials, Test No. HTTC-1 



August 29, 2013  

MwRSF Report No. TRP-03-285-13 

 

495 

20.3 Test Facility 

Physical testing was conducted at the MwRSF outdoor testing facility, which is located at 

the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport. The facility is 

approximately 5 miles (8 km) northwest from the University of Nebraska-Lincoln’s city campus. 

20.4 Equipment and Instrumentation 

Several types of equipment and instrumentation were utilized for this test and to collect 

and record data, including a bogie vehicle, accelerometers, an optic speed trap, pressure tape 

switches, high-speed and standard speed digital video, and digital still cameras. 

20.4.1 Bogie 

A rigid-frame bogie vehicle was used for this test. A variable-height, detachable impact 

head was used in the testing. The bogie head was constructed of 8-in. (203-mm) diameter, ½-in. 

(13-mm) thick standard steel pipe, with ¾-in. (19-mm) neoprene belting wrapped around the 

pipe. The impact head was bolted to the bogie vehicle, thus creating a rigid frame with an impact 

height of 26-3/4 in. (673 mm). The bogie with the impact head is shown in Figure 447. The 

weight of the bogie with the addition of the mountable impact head and accelerometers was 

1,877 lb (851 kg). 
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Figure 447. Rigid-Frame Bogie Aligned for Test No. HTTC-1 

A pickup truck with a reverse cable tow system was used to propel the bogie to a target 

impact speed of 45 mph (72 km/h). When the bogie approached the end of the guidance system, 

it was released from the tow cable, allowing it to be free rolling when it impacted the post. A 

remote-control braking system was installed on the bogie, thus allowing it to be brought safely to 

rest after the test. 

20.4.2 Accelerometers 

An accelerometer system was mounted on the bogie vehicle near its center of gravity to 

measure the acceleration in the longitudinal, lateral, and vertical directions. However, only the 

longitudinal acceleration was processed and reported. Two environmental shock and vibration 

sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and 

vertical directions. Both of the accelerometers were mounted near the center of gravity of the test 

vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the 
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SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 

specifications [73]. 

The first accelerometer system was a two-arm piezoresistive accelerometer system 

manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to 

measure each of the longitudinal, lateral, and vertical accelerations independently at a sample 

rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed 

and manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. More 

specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-

16M. The SIM was configured with 16 MB SRAM and 8 sensor input channels with 250 kB 

SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack was 

configured with isolated power/event/communications, 10BaseT Ethernet and RS232 

communication, and an internal backup battery. Both the SIM and module rack were 

crashworthy. The “DTS TDAS Control” computer software program and a customized Microsoft 

Excel worksheet were used to analyze and plot the accelerometer data. 

The second system, Model EDR-3, was a triaxial piezoresistive accelerometer system 

manufactured by IST of Okemos, Michigan. The EDR-3 was configured with 256 kB of RAM, a 

range of ±200 g’s, a sample rate of 3,200 Hz, and a 1,120 Hz low-pass filter. The “DynaMax 1 

(DM-1)” computer software program and a customized Microsoft Excel worksheet were used to 

analyze and plot the accelerometer data. 

Accelerometer data was collected, but never processed. It was determined to be 

unnecessary for the evaluation of the top cable-to-post attachments. 

20.4.3 Optic Speed Trap 

The retroreflective optic speed trap was used to determine the speed of the bogie vehicle 

before impact. Three retroreflective targets, spaced at 18-in. (457-mm) intervals, were applied to 
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the side of the bogie vehicle and reflect the beam of light. When the emitted beam of light was 

returned to the Emitter/Receiver, a signal was sent to the Optic Control Box, which in turn sent a 

signal to the data computer as well as activated the External LED box. The computer recorded 

the signals and the time each occurred. The speed was then calculated using the spacing between 

the retroreflective targets and the time between the signals. LED lights and high-speed digital 

video analysis are only used as a backup in the event that vehicle speeds cannot be determined 

from the electronic data. 

20.4.4 Pressure Tape Switches 

Three pressure tape switches, spaced at approximately 18-in. (457-mm) intervals and 

placed near the end of the bogie track, were used to determine the speed of the bogie before the 

impact. As the left-front tire of the bogie passed over each tape switch, a strobe light was fired 

sending an electronic timing signal to the data acquisition system. The system recorded the 

signals and the time each occurred. The speed was then calculated using the spacing between the 

sensors and the time between the signals. Strobe lights and high-speed video analysis are used 

only as a backup in the event that vehicle speeds cannot be determined from the electronic data. 

Due to technical difficulties, the pressure tape switches were not used to calculate bogie speed. 

20.4.5 Digital Photography 

Three AOS X-PRI high-speed digital video cameras and three JVC digital video cameras 

were used to document each test. The AOS high-speed camera had a frame rate of 500 frames 

per second and the JVC digital video camera had a frame rate of 29.97 frames per second. Both 

cameras were placed laterally from the post, with a view perpendicular to the bogie’s direction of 

travel. A Nikon D50 digital still camera was also used to document pre- and post-test conditions. 
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21 TOP CABLE-TO-POST ATTACHMENT—TEST RESULTS 

21.1 Test No. HTTC-1 and Results 

One bogie impact test was performed to evaluate the performance of 1/8-in. (3.2-mm) 

diameter, C360 brass, straight rods with bent ends as top cable-to-post attachment for the high-

tension, cable barrier system. The small-scale cable barrier system consisted of five S3x5.7 

(S76x8.5) steel posts, two cable terminals—one at each end—and a cable. A pre-test photograph 

of the entire system is shown in Figure 448. 

 
Figure 448. Pre-Test Photograph of Cable Barrier System, Test No. HTTC-1 

For test no. HTTC-1, the 1,877-lb (851-kg) steel-framed bogie impacted the barrier 

system at the center post, traveling 49.4 mph (79.5 km/h) and at a 25-degree angle. The post 

began to rotate backward immediately. High-speed video footage clearly showed that the cable 

was free from the post at a time of 0.008 sec after impact. The cable deflected slightly before 
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releasing away from the post, thus causing a wave to propagate along the length of the cable. As 

a result of the wave, the top cable-to-post attachments immediately upstream and downstream of 

the post sustained some damage, but they did not allow the cable to release from the posts. The 

impacted post yielded at the ground line and bent all the way over as the bogie overran it. The 

bogie went under the released cable. The test was considered a success. Pre- and post-test 

photographs for the posts that were impacted are shown in Figures 449 through 451. Sequential 

photographs from each of the high-speed video cameras are shown in Figures 452 through 454. 

  
Figure 449. Pre-Test and Post-Test Photographs for Post No. 3, Test No. HTTC-1 
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Figure 450. Pre-Test and Post-Test Photographs for Post No. 4, Test No. HTTC-1 

  
Figure 451. Pre-Test and Post-Test Photographs for Post No. 5, Test No. HTTC-1 
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  Time = 0 sec, Impact    Time = 0.006 sec 

  
  Time = 0.002 sec    Time = 0.008 sec 

  
  Time = 0.004 sec    Time = 0.10 sec 

 

Figure 452. Sequential Photographs for Camera AOS5, Test No. HTTC-1 
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  Time = 0 sec, Impact    Time = 0.006 sec 

  
  Time = 0.002 sec    Time = 0.008 sec 

  
  Time = 0.004 sec    Time = 0.010 sec 

 

Figure 453. Sequential Photographs for Camera AOS6, Test No. HTTC-1 
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  Time = 0 sec, Impact    Time = 0.006 sec 

  
  Time = 0.002 sec    Time = 0.008 sec 

  
  Time = 0.004 sec    Time = 0.010 sec 

 

Figure 454. Sequential Photographs for Camera AOS7, Test No. HTTC-1 
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21.2 Discussion, Summary, Conclusions, and Recommendations 

The 1/8-in. (3.2-mm) diameter, C360 brass, straight rod with bent ends was chosen for 

dynamic testing and evaluation due to: (1) its static vertical release load of 175.2 lb (779.3 N) 

was in the target range of 100 to 200 lb (445 to 890 N) and (2) it could be reasoned through 

engineering judgment and hand calculations that its static lateral release load would be similar to 

the static vertical release load. Ultimately, test no. HTTC-1 was considered a success. The cable 

was fully released away from the impacted post approximately 0.008 sec after impact, and the 

bogie did not overrun the cable. Furthermore, the upstream and downstream cable-to-post 

attachments absorbed the stress wave caused by the impact event to the tensioned cable without 

releasing it, which was a secondary concern. Thus, the 1/8-in. (3.2-mm) diameter, C360 brass, 

straight rod with bent ends was recommended for implementation as the new top cable-to-post 

attachment in the high-tension, 4-cable median barrier. 

When using Equation 4.13 to select the cable tension and post spacing, a conservatively 

low estimate of the top cable-to-post attachment’s lateral cable release load should be used. 

MwRSF recommends using a value of 150 lb (667 N). 
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22 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

22.1 Summary and Conclusions 

22.1.1 Research Objective 

The research objective of the portion of the project reported herein was to design new 

cable-to-post attachments to improve the safety performance of the non-proprietary, high-

tension, 4-cable median barrier system. The modified cable barrier system would be designed for 

use in median ditches with 6V:1H or flatter side slopes and using a 0 to 4 ft (0 to 1.2 m) lateral 

placement away from the edge of the shoulder or slope break point. However, the state DOTs 

may desire to select the system configuration so that the barrier would provide satisfactory safety 

performance when positioned anywhere in a 6V:1H or flatter median ditch. In addition, it was 

hopeful that the cable barrier system could later be modified for use in 4V:1H sloped medians, 

including at 0 to 4 ft (0 to 1.2 m) as well as anywhere in the ditch. Finally, the modified cable 

barrier system would be designed to meet the Test Level 3 impact safety standards provided in 

MASH. 

22.1.2 Research Approach 

The research objective was completed in four steps: (1) determine the minimum design 

loads associated with horizontal and vertical curves as a function of post spacing; (2) determine 

target capacities for the vertical and lateral cable release out of the cable-to-post attachments at 

all four cable heights; (3) design and test cable-to-post attachments for the bottom three cables; 

and (4) design and test cable-to-post attachments for the top cable. Steps 3 and 4 were ongoing, 

with cable-to-post attachments constantly being designed, tested, modified and re-tested until 

final recommendations were ready to be made. 
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22.1.3 Determination of Design Loads 

Cable barriers installed along roadways with changes in vertical and horizontal alignment 

will encounter load conditions which tend to push cables against the post, pull cables away from 

posts, lift cables up, or push cables down at the cable-to-post attachment. In order to design the 

cable-to-post attachments, it was necessary to determine these design loads. The resulting load 

equations were a function of the cable tension, post spacing, and curve parameters. Vertical and 

horizontal curve parameters were obtained from the AASHTO Green Book [72]. 

The vertical loads are given by Equation 4.11. 

         
 

    
      (4.11) 

 Where  T =  cable tension 

   s =  post spacing 

   K =  horizontal length per percent algebraic difference  

    in intersecting grades 

 

The K-value for a sag vertical curve on a highway with a design speed of 40 mph (72 

km/h) is 64 ft (19.5 m). For an 8-kip (36-kN) cable tension, the change in the slope of the cable 

between two adjacent, 16-ft (4.9-m) post spans, on a 40-mph (64 km/h) sag vertical curve, will 

produce a 20-lb (89-N) uplift force at the cable-to-post attachments. For comparison, the weight 

of a 16-ft (4.9-m) length of cable is approximately 13 lb (58 N). The design speed for most 

highways will be greater than 40 mph (64 km/h), so the K-values will be greater than 64 ft (19.5 

m), resulting in even smaller vertical forces on the cable-to-post attachments. 

The lateral loads are given by Equation 4.13. 

   (
 

 
)      (4.13) 

  Where   F = lateral load on the cable-to-post attachment 

    T = cable tension 

    s = post spacing 

    R = horizontal curve radius 
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Equation 4.13 is a useful relationship for determining the maximum allowable post 

spacing on a horizontal curve. For a design cable tension of 8 kips (36 kN) and lateral cable-to-

post attachment strength, F, the maximum allowable post spacing as a function of the curve 

radius is shown in Figure 455. 

 
Figure 455. Maximum Post Spacing vs. Horizontal Curve Radius 

22.1.4 Determining the Target Capacities 

As a starting point, a target vertical cable release of 225 lb (1.00 kN) was chosen for the 

lower three cable-to-post attachments. This value reflected a significant reduction from the 1.18-

kip (5.25-kN) vertical resistance of the keyway bolts used in the most recent designs. The goal 

was to ensure that if a vehicle’s A-pillar became positioned under the cable and began to push up 

on it (as observed in full scale crash test no. 4CMBLT-1), the cable would quickly release away 

from the post, introducing slack to the cable so that the normal force exerted by the cable on the 

A-pillar would not crush the A-pillar.  
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In addition to the targeted vertical cable release load, the lower three cable-to-post 

attachments would be designed with a targeted lateral release load of 6.00 kips (26.7 kN). The 

goal was for the cable-to-post attachments to be able to develop the full moment capacity of the 

post when loaded laterally. Bogie tests, as described in Chapter 6, were used to evaluate potential 

prototypes for cable-to-post attachments for the lower three cables. 

The top cable-to-post attachments would need to hold the cable in place before an impact, 

but easily and quickly release the cable when a post was impacted and began to rotate backward 

and downward. Using Equation 4.13 and assuming a maximum cable tension of 8.00 kips (35.6 

kN), a horizontal curve radius of 960 ft (293 m), the minimum curve radius for a roadway with a 

55-mph (89-km/h) design speed, and a post spacing between 12 and 24 ft (3.7 and 7.3 m), the 

target lateral cable release load for designing the top cable-to-post attachments was set in the 

range of 100 to 200 lb (445 to 890 N). 

22.1.5 Keyway Bolts 

Once the desired vertical and lateral cable release loads were selected for the cable-to-

post attachments, the next step was to design and test new cable-to-post attachments for the 

lower three cables. This process began with the keyway bolts. A total of twenty-eight bogie tests 

were performed on different keyway bolt concepts. For example, the bolt material was varied 

from the stronger A449 steel to the weaker C1018 steel. In addition, the shape of the keyway and 

of the bolt was explored. During this re-design effort, an ideal cable-to-post attachment behavior 

was refined. Ideally, when a cable-to-post attachment is pulled laterally, the bolt head will 

become caught in the narrow part of the keyway, thus forcing the attachment to fail. When pulled 

vertically, the attachment will bend and its head will rotate up and out of the wider part of the 

keyway without scraping against the inside of the flange. This behavior was first observed in 

some preliminary LS-DYNA simulations that were conducted on extended keyway bolts as part 
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of an academic effort. In actual bogie tests, modified extended keyway bolts were found to have 

lateral and vertical cable release loads of 6.47 kips (28.8 kN) and 486 lb (2.16 kN), respectively. 

22.1.6 Tabbed Brackets 

In addition to improved keyway bolts, prototype tabbed brackets were designed and 

tested for consideration as cable-to-post attachments for the lower three cables. Tabbed brackets 

were fabricated from grade 50 sheet steel. A total of 42 bogie tests were performed on different 

tabbed bracket concepts. Ten different versions were tested. There were two different variations 

of tabbed brackets—crimp-in-place and bolted, which referenced the method of attachment to 

the post. Ideal keyway attachment behavior could not be achieved with the crimp-in-place tabbed 

brackets. Head scraping against the inside of the flange caused the vertical cable release loads to 

be as high as 2.87 kips (12.8 kN). Therefore, crimp-in-place tabbed brackets were discarded in 

favor of the bolted variation. 

Several equations were derived to guide the design process as well as to determine the 

dimensions of prototype bolted tabbed brackets. These equations were refined over the course of 

the design process and are presented here in their final form. The dimensions, idealized load 

orientations, and assumed failure locations that were used in the development of the design 

equations, are shown in Figures 456 and 457. 
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  a) Laterally Loaded     b) Vertically Loaded 

 

Figure 456. Bolted Tabbed Bracket—(a) Laterally Loaded and (b) Vertically Loaded 

 
 

Figure 457. Bolted Tabbed Bracket Dimensions 

For the lateral loading condition, as shown in Figure 456a, four failure locations were 

assumed in the bracket, as shown in Figure 457, thus resulting in four separate equations. In the 
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derivation of the following equations, one half of the applied lateral load, PH, was assumed to be 

distributed to each end, as shown in Figure 458. It should be noted that dynamic magnification 

factors were not used in the derivation of the lateral load equations as they were not deemed 

necessary. 

 
Figure 458. End Reactions for Use in the Design Equations 

The applied lateral load needed to cause failure at location 1 was calculated using 

Equation 14.1. Failure location 1 was assumed to be a pure shear fracture in which two surfaces 

provided shear resistance to the end reaction of PH/2. The right side of the equation includes a 

factor of 5/6 to account for the difference in the predicted versus observed lateral loads from the 

bolted tabbed brackets in Round 2. 

   
 (

 

 
)

 

√ 
     

  

 √ 
        (14.1) 

  Where,  t = thickness (see Figure 456a) 

    σu = ultimate tensile stress 

    a = length of head (see Figure 457) 

 

The applied lateral load needed to cause failure at location 2 was calculated using 

Equation 14.2. Failure location 2 was assumed to be a pure tensile fracture in which one surfaces 

provided tensile resistance to the end reaction of PH/2. The right side of the equation includes a 

factor of 5/6 to account for the difference in the predicted versus observed lateral loads from the 

bolted tabbed brackets in Round 2. 
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 (

 

 
)       

 

 
        (14.2) 

  Where,  b = width of neck (see Figure 457) 

 

The applied lateral load needed to cause failure at location 3 was calculated using 

Equation 14.3. Failure location 3 was assumed to be a pure tensile fracture in which a cross-

section through the center of the bolt provided tensile resistance to the end reaction of PH/2. The 

diameter of bolt hole was assumed to be 1/16 in. (1.6 mm) larger than the diameter of the bolt, 

and the drilling or punching operation was assumed to affect an additional 1/16 in. (1.6 mm) of 

material around the hole, further reducing the tensile area. The right side of the equation includes 

a factor of 5/6 to account for the difference in the predicted versus observed lateral loads from 

the bolted tabbed brackets in Round 2. 

   
 (

 

 
)             

 

 
           

 

 
            (14.3) 

  Where  d = width of bottom tab (see Figure 457) 

    D = diameter of hole (see Figure 457) 

    υ = 1/16 in. (1.6 mm) 

    db = diameter of bolt 

    μ = 1/8 in. (3.2 mm) 

 

The applied lateral load needed to cause failure at location 4 was calculated using 

Equation 14.4. Failure location 4 was assumed to be tearing failure according to AISC Equation 

J3-6a [76]. The right side of the equation includes a factor of 5/6 to account for the difference in 

the predicted versus observed lateral loads from the bolted tabbed brackets in Round 2. 

   
 (

 

 
)    (  

 

 
)      (  

 

 
)      (  

    

 
) (14.4) 

Where  f =  distance from the center of the bolt hole to the bottom   

   edge of the bolted tabbed bracket (see Figure 457) 

 

The vertical release load was assumed to occur in pure, plastic bending. The idealized 

vertical loading used to derive Equation 14.5 was shown in Figure 456b. A dynamic 
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magnification factor of 1.5 was incorporated into the vertical release load equation. The moment 

arm, x, was measured between the center of the cable and the mid-plane of the outer bracket, as 

shown in Figure 456b. 

 

   
     

 
 

      

 
 

   (
   

 
)  

 
 

      

  
  (14.5) 

 Where  MP = plastic moment 

   Z = plastic section modulus where bending occurs    

  x = length of the moment arm (see Figure 456b) 

   σy = yield stress 

   b = cross-sectional width where bending occurs (see Figure 457) 

 

Equations 14.1 through 14.5 used the actual yield and tensile strengths of the material, 

not the minimum values. MwRSF recommends using grade 50 sheet steel with yield and tensile 

strengths similar to the steel used to fabricate the prototype tabbed brackets. The ASTM A1011 

HSLA Grade 50 sheet steel that was used had yield and tensile strengths of 56 ksi (386 MPa) and 

69 ksi (476 MPa), respectively.  

In general, Equations 14.1 through 14.4 predicted the lateral release loads very well, 

especially if the failure observed in the component test was by pure tensile fracture at failure 

locations 2 or 3. Equation 14.5 was also useful, but it tended to under-predict the vertical release 

loads. 

Bolted tabbed brackets performed much better than the crimp-in-place variation. Based 

on the results of the component tests, tabbed bracket Version 10 was recommended for the cable-

to-post attachment for the lower three cables. However, it should be noted that bolted tabbed 

bracket Version 8 as well as the extended keyway bolt may both be viable options. 
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22.1.7 Top Cable-to-Post Attachments 

A total of 45 static tests were performed on potential top cable-to-post attachments. 

Based on the static test results, one attachment was chosen for a bogie impact test to verify that it 

would easily and quickly release the cable when the post was impacted by a vehicle and rotated 

backward and downward. The bogie impact test successfully demonstrated that the 1/8-in. (3.2-

mm) diameter, C360 brass, straight rod with bent ends performed very well as the top cable-to-

post attachment. The static tests, which were used to evaluate prototypes for the top cable-to-post 

attachment, investigated vertical cable release capacities. From the results and using engineering 

judgment, it was reasoned that the lateral cable release loads would be very similar the vertical 

cable release loads due to notch geometry. 

22.2 Recommendations 

Tabbed bracket Version 10 is recommended as the preferred cable-to-post attachment for 

the lower three cables. It is to be secured to the flange of the post with a 5/16-in. (7.9-mm), SAE 

grade 5, hex cap screw and nut. Tabbed bracket Version 10 had lateral and vertical cable release 

loads of 6.10 kips (27.1 kN) and 346 lb (1.54 kN), respectively. 

The 1/8-in. (3.2-mm) diameter, C360 brass, straight rod with bent ends is recommended 

as the preferred top cable-to-post attachment. The cable is to sit in a V-notch on top of the post 

and the straight rod is to be inserted through the designated holes in the flanges so that it restrains 

the cable within the post. From static testing, the vertical cable release load of the recommended 

straight rod with bent ends was 175 lb (778 N). The 1/8-in. (3.2-mm) diameter C360 brass that 

was used for the prototypes had a 7.2% elongation at failure, and yield and tensile strengths of 62 

ksi (427 MPa) and 81 ksi (558 MPa), respectively. It may be possible to use galvanized carbon 

steel instead of C360 brass for the straight rod with bent ends, as long as the yield, tensile 

strength, and ductility are similar. Further testing may be required in those cases. 
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When using Equation 14.13 to select the cable tension and post spacing, a conservatively 

low estimate of the top cable-to-post attachment’s lateral cable release load should be used. 

MwRSF recommends using a value of 150 lb (667 N). 
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Appendix A. Proprietary Cable Barrier Systems 

A resource chart is provided in Figure A-1 which provides researchers and designers with 

basic information on several federally-approved cable barrier systems. Researchers and designers 

are encouraged to visit the manufacturers’ web sites for more information on the specific 

proprietary systems. 
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Figure A-1. Cable Barrier Resource Chart [15] 
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Appendix B. Full-Scale Crash Test Summary Sheets—Cable Barrier Testing 

A summary sheet for each full-scale crash test on low- and high-tension cable barrier 

systems that have been performed by MwRSF is provided in this section. Summary sheets 

contain general information about the system and its components, test layout, as well as test 

results. For more information about these tests, it is recommended to review the noted 

references. 
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Figure B-1. Test Results Summary (English), Test No. CMB-1 [70] 
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Figure B-2. Test Results Summary (English), Test No. CMB-2 [70] 
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Figure B-3. Test Results Summary (English), Test No. CMB-3 [70] 
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Figure B-4. Test Results Summary (English), Test No. 4CMB-1 [2] 
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Figure B-5. Test Results Summary (English), Test No. 4CMB-2 [2] 
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Figure B-6. Test Results Summary (English), Test No. 4CMB-3 [2] 
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Figure B-7. Test Results Summary (English), Test No. 4CMB-4 [3] 
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Figure B-8. Test Results Summary (English), Test No. 4CMB-5 [3] 
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Figure B-9. Test Results Summary (English), Test No. 4CMBLT-1 [4]
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Appendix C. Derivation of Cable Slope Changes 

This section contains the derivation of an equation that was used in Chapter 4, Section 

4.3, to determine the vertical loads applied to cable-to-post attachments based on changes in the 

vertical roadway alignment. 
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Figure C-1. Derivation of Slope Change, Sheet ¼ 
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Figure C-2. Derivation of Slope Change, Sheet 2/4 
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Figure C-3. Derivation of Slope Change, Sheet ¾ 
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Figure C-4. Derivation of Slope Change, Sheet 4/4 
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Appendix D. CAD Details for Top Cable-to-Post Attachments 

CAD details for the top cable-to-post attachment concepts, as denoted in Chapter 17, are 

provided in this section. These details were used for in-house fabrication and do not constitute a 

formal set of drawings. 
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Figure D-1. S3x5.7 (S76x8.5) Section Hole Details 
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Figure D-2. 1/16 in. (1.6 mm) Diameter, Web-Inserted Curved Rod Detail 
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Figure D-3. 3/32 in. (2.4 mm) Diameter, Web-Inserted Curved Rod Detail 
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Figure D-4. 1/8 in. (3.2 mm) Diameter, Web-Inserted Curved Rod Detail 
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Figure D-5. 1/16 in. (1.6 mm) Diameter, Squeeze-In-Place Curved Rod Detail 
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Figure D-6. 3/32 in. (2.4 mm) Diameter, Squeeze-In-Place Curved Rod Detail 
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Figure D-7. 1/8 in. (3.2 mm) Diameter, Squeeze-In-Place Curved Rod Detail 
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Figure D-8. Cable Tie Concepts 
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Figure D-9. 1/8 in. (3.2 mm) Diameter, Revised Web-Inserted Curved Rod Detail 
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Figure D-10. 1/8 in. (3.2 mm) Diameter, Straight Rod with Bent Ends Detail 
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Figure D-11. 3/16 in. (4.8 mm) Diameter, Straight Rod with Bent Ends Detail 
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Figure D-12. 1/4 in. (6.4 mm) Diameter, Straight Rod with Bent Ends Detail 
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Appendix E. Material Specifications 

Mill certificates for the keyway bolts, the sheet steel for the tabbed brackets, and the 

brass and stainless steel round rods and bars for the top cable-to-post attachments are provided in 

this section. Mill certificates provide information about chemical composition, applicable ASTM 

standards, mechanical properties, and other items of interest for engineers. 
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Figure E-1. AISI C1018 Keyway Bolts 
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Figure E-2. ¼ in. (6.4 mm) Diameter, C360 Brass Round Bar 
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Figure E-3. 1/8 in. (3.2 mm) Diameter, T-304 Stainless Steel Round Bar 
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Figure E-4. 3/16 in. (4.8 mm) Diameter, C360 Brass Round Bar 
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Figure E-5. 3/32 in. (2.4 mm) Diameter, T-303 Stainless Steel Round Bar 
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Figure E-6. 3/32 in. (2.4 mm) Diameter, C360 Brass Round Bar 
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Figure E-7. 1/16 in. (1.6 mm) Diameter, C360 Brass Round Bar 
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Figure E-8. 1/8 in. (3.2 mm) Diameter C360 Brass Round Bar 
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Figure E-9. ¼ in. (6.4 mm) Diameter, T-304 Stainless Steel Round Bar 
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Figure E-10. 3/16 in. (4.8 mm) Diameter, T-304 Stainless Steel Round Bar 
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Figure E-11. 10-Gauge Sheet Steel 



 

 

5
6
7
 

A
u

g
u

st 2
9

, 2
0
1

3
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
5
-1

3
 

 
Figure E-12. 11-Gauge Sheet Steel 
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Figure E-13. 12-Gauge Sheet Steel 
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Figure E-14. 14-Gauge Sheet Steel 
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